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Abstract: Increasing depth of convolutional neural networks (CNNs) 

is a highly promising method of increasing the accuracy of the 
(CNNs). Increased CNN depth will also result in increased layer 
count (parameters), leading to a slow backpropagation convergence 
prone to overfitting. We trained our model (Residual-CNDS) to 

classify very large-scale scene datasets MIT Places 205, and MIT 
Places 365-Standard. The outcome result from the two datasets 
proved our proposed model (Residual-CNDS) effectively handled the 

slow convergence, overfitting, and degradation. CNNs that include 
deep supervision (CNDS) add supplementary branches to the deep 
convolutional neural network in specified layers by calculating 
vanishing, effectively addressing delayed convergence and overfitting. 

Nevertheless, (CNDS) doesn’t resolve degradation; hence, we add 
residual learning to the (CNDS) in certain layers after studying the 
best place in which to add it. With this approach we overcome 

degradation in the very deep network. We have built two models 
(Residual-CNDS 8), and (Residual-CNDS 10). Moreover, we tested 
our models on two large-scale datasets, and we compared our results 
with other recently introduced cutting-edge networks in the domain 

of top-1 and top-5 classification accuracy. As a result, both of models 
have shown good improvement, which supports the assertion that the 
addition of residual connections enhances network CNDS accuracy 

without adding any computation complexity. 

Keywords: Residual-CNDS; scene classification; Residual Learning 

Convolutional Neural Networks; Convolutional Networks with Deep 
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1 Introduction 

Lately, convolutional neural networks have made great advancement in computer 
vision competitions (ILSVRC) [1, 2], which is ImageNet Large Scale Visual Recognition 
Challenge, one of the best proving grounds for the computer vision algorithms. Also, 
(CNNs) have shown a great breakthrough in other segments of image classification jobs 
[3, 4]. The convolutional neural networks have the power to evaluate different features of 
the images and classify them in a comprehensive framework. The accuracy of the 
features that are extracted can be elevated by increasing the layer count being used to 
build the (CNN). The CNN accuracy could be enhanced by adding more layers to the 
network (going deep), a method proven in the ILSVRC competition [6, 7]. Furthermore, 
the highest scores achieved in [6-9] were all using quite deep CNN models on the 
ImageNet dataset [10]. Hence, network depth is of great significance. The effeteness of 
very deep convolutional neural can be seen in image classification and even more 
complicated tasks like detecting objects and performing segmentation [11-15]. However, 
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very deep models with increased layer count raise certain problems such as slow 
convergence, overfitting, and vanishing/exploding gradients [16, 17]. 

There were several approaches in trying to resolve the problems of slower 
convergence and overfitting. One of these, first introduced by Simonyan and Zisserman 
[6], utilizes the pre-trained weights derived from networks of less depth to set the weights 
of very deep networks. However, using this technique has shown to be computationally 
expensive, and the difficulty in tuning the parameters. Szegedy et al. [7] also proposed 
another technique to solve the same problems: delayed convergence and overfitting. 
Where their proposed technique used auxiliary branches connected to shallower layers of 
the neural network. The objective of Szegedy et al. [7] had in utilizing these auxiliaries 
was to have them work as classifiers to boost the gradients for reversed propagation over 
layers of the deep neural network. Moreover, the auxiliary branches encourage feature 
maps in the middle layers. Nevertheless, Szegedy et al. [7] did not have a specified 
process defined the location of where or how to add the auxiliary branches. A similar 
approach was proposed by Lee et al. [18] in which they add auxiliary branches next to 
every shallower layer, which the losses propagate through these auxiliary branches 
summing with the loss of the output layer. Lee et al. [18] have shared some good results 
and enhanced the rate of the convergence, but Lee et al. [18] did not utilize the idea of 
deeply supervised networks (DSN) [18] with deep architecture. 

 To address the problems of slower convergence and overfitting, Wang et al. [19] 
proposed the idea of convolutional neural networks with deep supervision (CNDS), 
whom handle the task of determining where to attach supplementary branches. Wang et 
al. [19] studied vanishing gradients in the deep network, specifically having them decide 
where to add the branches. Determining auxiliary branch locations has solved the 
problem of overfitting and slower convergence. However, the degradation problem in 
very deep networks still went without resolution. The degradation problem arises 
whenever the network goes deeper, saturating the accuracy of the deep neural networks 
leading to a rapid collapse. The degradation problem makes the neural networks prone to 
high training error as reported in [20, 21] as more and more layers are added to the 
network; furthermore, overfitting is not the cause of the degradation issue. As the result 
of studying degradation, the researchers have shown that various networks are not all 
easily optimized. In this paper, we target slower convergence, degradation and overfitting 
at once through building a deep network integrated on the CNDS network structure with 
residual learning [22], a state-of-the-art technique in handling degradation. We built two 

FIG (1) 
 

THE STRUCTURE OF EIGHT CONVOLUTIONAL NETWORKS WITH DEEP SUPERVISION (CNDS)[19] 
 

 



   

 

   

   

 

   

   

 

   

        
 

    

 

 

   

   

 

   

   

 

   

       
 

networks, each of which has residual connections [22] integrated with the CNDS [19] 
structure. We trained our two models on the very large-scale MIT Places 205 and 
Places365-Standard scene datasets. We also compared our networks with AlexNet [2] 
and GoogLeNet [7] on both MIT Places 205 and Places365-Standard scene datasets. 
AlexNet was proposed by Krizhevsky et al. [2] in 2012. Krizhevsky et al. [2] performed 
training on a deep neural network consisting of five convolutional layers and three fully-
connected layers. AlexNet [2] achieved a good result in the ImageNet LSVRC-2010 
contest, a result which outperformed previous state-of-the-art networks. Consistent with 
AlexNet [2], GoogLeNet [7] was a state-of-the-art network when it was first proposed by 
Szegedy et al. [7]. GoogLeNet [7] achieved a high result in the ImageNet Large-Scale 
Visual Recognition Challenge 2014 (ILSVRC14) in classification and detection. Szegedy 
et al. [7] improved computational resource utilization methods inside the network of their 
architecture, in which they increased the width and the depth of the neural network; 
however, computational complexity remained unchanged. Our proposed models have 
shown a better result in classification than both AlexNet [2] and GoogLeNet [7] in top1 
and top5 on both MIT Places 205 and Places365-Standard. However, our models 
are/almost are less computationally complex than GoogLeNet [7] and AlexNet [2]. 
Furthermore, the two networks eight and ten convolutional layers have shown the 
advantage of integrating residual learning [22] and CNDS [19], which increases the 
accuracy of CNDS network.  

 Section II will provide background on the CNDS network and residual learning. 
Section III will provide the specifications of the prospective Residual-CNDS. Section IV 
presents the details of the MIT Places 205 and Places365-Standard scene-oriented 
datasets on which our experiments were ran. Section V describes our procedural methods. 
We further discuss our results in section VI. 

II. BACKGROUND 

At ILSVRC 2014 contest [1], problems concerning computer vision were used to 
benchmark networks, and it is where the notion behind utilizing very deep artificial 
neural networks first acquired importance. Therefore, the study of efficient ways to train 
very deep neural networks has as of recent demonstrated indications of progress. In part 
(A) we discuss the structure of CNDS network and the way its authors use vanishing 

FIG (2) 
 

PROPOSED EIGHT CONVOLUTIONAL NETWORKS WITH DEEP SUPERVISION AND  
RESIDUAL LEARNING (RESIDUAL-CNDS). DASHED RECTANGLE SHOWS THE DEEP  

SUPERVISION BRANCH AND RESIDUAL CONNECTIONS ARE THE RED 
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gradients to determine the fit location to insert the supplementary branch. Following that, 
we explore the residual learning mechanism. The exploration and discussion of CNDS 
and residual learning techniques provide a fundamental background and supplies a useful 
basis for the proposed networks (Residual-CNDS) that are going to be explained at a later 
point.  

A. CNDS Network 

 Szegedy et al. [7] introduced the idea of adding subsidiary classifiers that connects 
into the middle layers. The neural network’s generalization gets much better by adding 
these auxiliary classifiers, whom provide more supervision in the training stage. 
Nevertheless, Szegedy et al. [7] doesn’t provide documentation on where to add the 
subsidiary classifier. Lee et al. [18] discussed where to add the classifier branches. The 
Lee et al. [18] network, called deeply-supervised nets (DSN), connects am SVM 
classifier to the output of each hidden layer of the network. Lee et al. [18] utilize this 
mechanism in the training mode. They achieve optimization through a summation of loss 
from the output layer and that of subsidiary classifiers. 

The matter of where to add the auxiliary classifiers has been handled by Wang et al. 
[19]. Wang et al. [19] deep supervision (CNDS) networks have some big distinctions 
from that of Lee et al. [18]. In the beginning, Lee et al. [18] connects the branch classifier 
in every instance of a hidden layer, while Wang et al. [19] utilizes a gradient-based 
heuristic method in determining whether or not an auxiliary classifier. Another variation 
in the Wang et al. [19] paper, is that they utilize a tiny artificial neural network as a 
subsidiary supervision classifier. This small branch contains convolutional layer, some 
fully connected layers, all followed by a Softmax, a design which closely resembles 
Szegedy et al. [7]. On the other hand, SVM classifiers, which are linked to hidden layer 
output were used by Lee et al. [16].  

FIG (3) 
 

RESIDUAL CONNECTION [22] 
 

 



   

 

   

   

 

   

   

 

   

        
 

    

 

 

   

   

 

   

   

 

   

       
 

The vanishing of gradients process was used by Wang et al. [19] in determining 
auxiliary supervision branch locations. In the beginning, Wang et al. [19] built the neural 
network without the supervision classifiers. Weights of the neural network were set from 
Gaussian pattern with a zero mean, standard deviation of 0.01, and bias of 0. Wang et al. 
[19] then perform between 10 and 50 back-propagation epochs and control the mean 
gradient amount of the shallower layers by plotting the subsidiary supervision classifiers 
add whenever the mean gradient rate degrades, i.e., drops under a 10-7 threshold. In the 
Wang et al. [19] approach, the average gradient drops under the appointed threshold. 
Appropriately, the auxiliary classifier was added following the fourth layer by Wang et 
al. [19].  Fig (1) demonstrates the Wang et al. [19] network approach. In this paper, to 
make an easier comparison between our proposed design and Wang et al. [19] design, we 
follow the Wang et al. [19] paper’s naming style. 

B.  Residual Learning 

 Degradation decays the optimization in deep convolutional neural networks. 
Increasing depth of the convolutional neural networks should increase the networks 
accuracy. Nevertheless, the empirical result demonstrates that the error presented by the 
deeper convolutional neural networks is higher than their equivalent superficial neural 
networks. The degradation problem has been solved by the proposed He et al. [22] 
design. The residual learning proposed by He et al. [22] let every few stacked layer 
qualify as a residual mapping as degradation stops layers from fitting the required 
subsidiary mapping. They alter the subsidiary mapping to resemble that of formula (2) 
rather than formula (1). He et al. [22] assumes a harder optimization of the primary 
mapping than the residual mapping. 

    F(x) = H(x) (1) 

 F(x) = H(x) – x (2) 

 F(x) = H(x) + x (3) 

Shortcut links are expressed by formula 3 [22]. A shortcut connection serves as a process 
of surpassing (x >= 1) layers in the convolutional neural network [23-25]. Fig (3) 

FIG (4) 
 

SPECIFICS OF THE RESIDUAL CONNECTIONS IN THE PROPOSED (RESIDUAL-CNDS) NETWORK 
 

 



   

 

   

   

 

   

   

 

   

    Large-Scale Scene Image Categorization with Deep Learning Based Model    
 

 

    

 

 

   

   

 

   

   

 

   

       
 

demonstrates the way that the shortcut connection can be performed in a convolutional 
neural network. He et al. [22] utilize the concept of shortcut connections to perform 
identity mapping [22] as in Fig (3). The shortcut connections output is fused with stacked 
layer output as shown in Fig (3), as shown in formula (3). Identity shortcut connections 
have the advantage of being parameter free. Highway networks [21] have shown a 
difference, as shortcut connections are presented with parameterized gating functions 
[26]. Another advantage of the He et al. [22] is that through the stochastic gradient 
descent algorithm we can optimized identity shortcut connections as an end to end 
solution. Furthermore, the identity shortcut connections are easy to execute when 
utilizing deep learning libraries like [27-30]. 

III. PROPOSED RESIDUAL-CNDS NETWORK ARCHITECTURE 

 In this work, the first proposed Residual-CNDS version’s main branch contains eight 
convolutional layers. We utilize filters with a micro receptive area, only 3*3, the smallest 
size possible when trying to grasp the idea of (left/right, up/down, center). Convolution 
layer stride is fixed to 1 pixel in the main branch except for the first layer which has a 
stride of two with a convolutional layer padding of 1 pixel in the main branch. 
Furthermore, we added a Scale layer to each convolutional neural layer in the main branch 
and spatial pooling is performed by five max-pooling layers, whom accompany some 
convolutional layers. It should be noted that not every convolutional layer is accompanied 
by max-pooling layers. All max-pooling layers are implemented on a 2*2-pixel window 
except for the first which is done on a 3*3-pixel window, with a stride of 2. Applying rules 
from Wang et al. [19], we attach the auxiliary classifier following the convolutional layer 
which is prone to the vanishing gradients problem (conv-3-2), as shown in Fig (1).  

FIG (5) 
 

PROPOSED TEN CONVOLUTIONAL NETWORKS WITH DEEP SUPERVISION AND RESIDUAL 
 LEARNING (RESIDUAL-CNDS). DASHED RECTANGLES SHOWS THE DEEP SUPERVISION 

 BRANCH AND RESIDUAL CONNECTIONS ARE THE RED 
 

 



   

 

   

   

 

   

   

 

   

        
 

    

 

 

   

   

 

   

   

 

   

       
 

Feature maps, created in the shallower layers as Wang et al. [19] describes, are noisy, 
requiring us to minimize the noise production in the shallower layers prior to passing them 
to the classifiers. For that reason, we initialize our subsidiary branch with an average 
pooling layer that has 5*5 kernel size and a stride of two. Following this, we add a 
convolutional layer with a kernel size of 1*1 and a stride of one. Finally, we attach two 
fully connected layers, both containing 1,024 channels and dropout ratio of 1/2. In 
comparison with the subsidiary branch, the main branch contains two F.C. layers with 
4,096 channels as well as a dropout ratio of ½ for each fully connected layer. All hidden 
and fully connected layers are supplied with the rectification (ReLU (Krizhevsky et al., 
2012)) non-linearity, except for the convolutional layer preceding the element-wise 
addition connections, the branch convolutional layer and the fully connected output layers. 
Lastly, the main and the subsidiary branch each have a dedicated output layer, containing a 
fully connected layer succeeded by a softmax layer to determine probability of a class.  

Wmain = (W1, …, W11) (4) 

Wbranch = (Ws5, …, Ws8) (5) 

 Equation (4) [19] shows the names of main branch weights. Moreover, the equation’s 
weights (4) resemble three fully connected layers and eight convolutional layers. 
Equation (5) [19] illustrates the names of weights of the subsidiary branch whom 
resemble the three fully connected layers and the first convolutional layer. If X11 is 
assigned to symbolize the map of features derived from the output layer in the main 
branch, then we can compute probability from the softmax function from the labels k =1, 
K, a formula depicted by equation (6) [19]. Furthermore, if we assign S8 to represent the 
feature map that is derived from the output layer in the auxiliary classifier, then 
calculating return can be done with the help of equation (7) [19].  

pk =  (6) 

psk =  (7) 

The loss, computed from the main branch is illustrated in equation (8) [19], which 
calculates likelihoods generated by the softmax function. Also, loss generated from the 
subsidiary classifier is computed by using equation (9) [19]. Furthermore, the loss 
generated from the subsidiary classifier carries the weights of the subsidiary classifier and 
the weights of the previous convolutional layers before the subsidiary classifier in the 
main branch.  

0 (Wmain) = -  (8) 

s (Wmain, Wbranch) = -  (9) 

Loss generated from the main branch and the subsidiary classifier can be computed 
using equation (10) [19]. Equation 10 computes weighted total as the main branch is 
illustrated with greater weight in comparison to the auxiliary classifier. Furthermore, αt 

represents the rate of the auxiliary classifier as an adjustment factor. Symbol αt represents 
decay with multiple iterations as shown in equation (11) [19], with N representing total 
iteration count. 
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s (Wmain, Wbranch) = 0 (Wmain)+αt s (Wmain, Wbranch)   (10) 

αt = αt * (1 – t/N) (11) 

The residual learning design we present adapts the shortcut connections proposed 
by He et al. [22] depicted below by equation (12).    

 y = F(x, {Wi}) + x (12) 

Many experiments have concentrated on the CNDS architecture, the process of 
deciding where to add residual connections [22] and the process of deciding how many 
layers should be skipped in shortcut connections [22]. We decided to add residual 
connections [22] to the main branch exclusively. We cannot add residual connections to 
the auxiliary classifier because there are no consecutive convolutional layers in the 
auxiliary classifier. The proposed design, shown in Figure 2, has demonstrated residual 
learning connections in the master branch. From here on out we will symbolize 
convolutional layers with convolutional, pooling layers with Pool., and fully connected 
layers with FC. In the beginning, the residual connection fuses input of the Conv3-1 to 
the output of Conv3-2 using element-wise addition connection, as element-wise links the 
output of Pool-2 to the output of Conv3-2. Conv-2 and Conv3-2 have a kernel size of 128 
and 256 respectively. To give Conv2 and Conv3_2 a kernel of equal size we add a 
convolutional layer with a kernel of size 256 between Pool-2 and element-wise addition. 
Next, we add the second residual connection following Pool-3 while the shortcut 
connection surpasses convolutional layers Conv4_1 and Conv4_2. Hence, the residual 
connection is linked to the output of Pool-3 and the output of Conv4-2. The kernel of 
Conv3-2 is of size 256 and Conv4-2 has a kernel of size 512, calling for us to a 
convolutional layer with kernel of size 512. The convolutional layer added between Pool-
3 and the element-wise addition layer regulates the size of Pool-3 and Conv4-2 kernels, 
as demonstrated in Figure 4. Furthermore, the auxiliary classifier is attached after the 
element-wise addition between the output of Pool-3 and Conv4-2. The final residual 
connection connects output of Pool-4 and the latest convolutional layer, Conv5-2. In the 
third residual connection, it is not necessary to add a modification convolutional layer 
between Pool-4 and element-wise addition as the kernel size of Conv4-2 and Conv5-2 is 
512. 

 The second proposed Residual-CNDS version two contains a master branch with 10 
convolutional layers. After following the same process, we described for Residual-CNDS 
version one, we add a Scale layer to each convolutional layer in the master branch. The 
first convolution layer has assigned kernel size 7*7 and stride of two. The rest of the 
convolutional layers in the Residual-CNDS version two have a kernel size of 3*3 with a 
stride of one in the master branch. Following the rule proposed by Wang et al. [19], the 
auxiliary classifier, which has the supervision branch, is attached after the convolutional 
layer (Conv-3-2), the same convolutional layer suffering from vanishing gradients issue, 
as demonstrated in Figure 5. The feature maps generated by the shallower layers appear 
to be noisy. It is very important to reduce the noise in these convolutional layers before 
the classifiers are reached. We minimize feature map dimensionality [19] and we pass 
them into non-linear functions prior to placing them into classifiers. Accordingly, the 
auxiliary branch begins with an average pooling layer that has kernel of size five and 
stride of two followed by a convolutional layer with a kernel size of 1*1 and stride of 
one. Later, we add two fully connected layers with 1,024 output channels followed with a 



   

 

   

   

 

   

   

 

   

        
 

    

 

 

   

   

 

   

   

 

   

       
 

½ ratio dropout layer for each fully connected layer. The second subsidiary branch in the 
Residual-CNDS version two is added following convolutional layer (Conv-3-2). The 
second subsidiary branch has the same architecture and values of the first subsidiary 
classifier. The main branch has two fully connected layers of channel size of 4,096 
attached to both and ½ ration dropout layers. All hidden and fully connected layers are 
supplied with the rectification (ReLU (Krizhevsky et al., 2012)) non-linearity, except for 
the convolutional layer prior to the element-wise addition connections, the convolutional 
layer and the fully connected output layers. The main and auxiliary classifiers have an 
output layer, which has a softmax layer to compute class probability. 

Wmain = (W1, …, W13) (13) 

Wbranch1 = (Ws5, …, Ws8) (14) 

Wbranch2 = (Ws9, …, Ws12) (15) 

 Equation (13) [19] shows the names of weights from the main branch. As the 
weights in equation (13), are the weights of the 10 convolutional layers and three fully 
connected layers in the main branch. Furthermore, the weights of the first subsidiary 
branch are shown in equation (14) [19], which are the weights of one convolutional layer 
and three fully connected layers. Next, the weights of the second subsidiary branch are 
shown in equation (15) [19], which are the weights of one convolutional layer and three 
fully connected layers.  

In the beginning, assuming the feature map created from the output layer in the 
main branch to be X13, we can compute probability with the help of the softmax function 
from labels k =1, ..., K, as shown in equation (16) [19]. Moreover, if we assume the 
feature map is the first auxiliary branch S8, and the feature map of the second auxiliary 
branch S12 created from the output layer in both the 1st and 2nd auxiliary branches, then 
computing the response is granted by equations (7) and (17) [19].       

pk =  (16) 

psk2 =  (17) 

The loss of Residual-CNDS version two can be computed utilizing the equation (8) 
[19] in the main branch. The loss in the main branch is calculated by utilizing likelihoods 
generated from the softmax function.  On the other hand, the first subsidiary classifier 
loss is computed utilizing equation (18) [19], while the second classifier loss can be 
computed from equation (19) [19].  The loss generated from the subsidiary classifiers 
contain the weights of the subsidiary classifiers and the weights of the previous 
convolutional layers in the main branch.  

s1 (Wmain, Wbranch1) = -  (18) 

s2 (Wmain, Wbranch2) = -  (19) 

Loss generated from the main branch and the subsidiary classifiers can be computed 
utilizing equation (20) [19]. Equation (20) computes weighted sum as the main branch is 
allotted more weight than both auxiliary classifiers. The symbol αt is used to compute the 
value of the auxiliary classifiers as an adjustment parameter. αt decays with consecutive 
epochs as shown by equation (11) [19], where N represents total epochs. In Residual-
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CNDS version two we utilize the shortcut connections derived from residual learning 
[22] as shown in equation (12) [22]. 

s (Wmain, Wbranch1, Wbranch2) = 0 (Wmain)+αt s1 (Wmain, Wbranch1)+ s1 

(Wmain, Wbranch2)  (20) 

The first residual learning connection facilitates a connection between input of 
Conv3-1 and output from Conv3-2 using the element-wise addition, which links output 
from Pool-2 to the output from Conv3-2. Conv-2 and Conv3-2 have kernels of size 128 
and 256 respectively. Because these two convolutional layers have unequal kernel size, 
we are required to form a convolutional layer of kernel size 256 between Pool-2 and 
element-wise addition. Figure 4 demonstrates the added convolutional layer 
(Res3_Branch).  

Second, the second residual connection connects output of Pool-3 to output from 
Conv4_2, and the residual connection surpasses two convolutional layers. Hence, the 
residual learning connection links the input of Conv4_1 to output from Conv4-2. 
Furthermore, we add an adjustment convolutional layer (Res4_Branch) between Conv3-2 
and Conv4-2 due to differing kernel sizes, as demonstrated in Figure 4.  Thus, the 
element-wise addition layer can mirror the output of Conv3-2 and Conv4-2 smoothly.  

 We add the first auxiliary classifier next to the element-wise addition integration 
process after the output of Pool-3 and before Conv4-2. The third residual connection is 
added to connect the output from Pool-4 to Conv5-2. In the third element-wise addition 
integration process we do not add the adjustment convolutional layer because the kernel 
size of the Conv4-2 and Conv5-2 is an equal 512 for both.    

We added the second and last subsidiary classifier next to the element-wise addition 
integration process between the output of Pool-4 and the Conv5-2. Furthermore, we 
attached the fourth and final residual connection after output of Pool-5 and before Conv6-
2. Also, it was unnecessary to insert an adjustment convolutional layer because the kernel 
size of the Conv5_2 and Conv6_2 is an equal 512 for both.  

.IV. Image Dataset Description 

We ran these experiments on MIT Places 205 [31], and MIT Places365-Standard [34] 
datasets. The CNDS, AlexNet, and GoogLeNet were all ran on the MIT places dataset, 

TABLE (1) 
 

COMPARISON OF THE TOP 1 & 5 VALIDATION AND TEST 

CLASSIFICATION ACCURACY (%) WITH OTHER PEER REVIEWED 

PUBLISHED NETWORKS ON THE MIT PLACES 205 DATASET 
 

Network 
Top-1 

Validation/Test 
Top-5 

Validation/Test 

AlexNet [2] - / 50.0 - / 81.1 

GoogLeNet [7] - / 55.5 - / 85.7 

CNDS-8 [19] 54.7 / 55.7 84.1 / 85.8 

Our Model: 
Residual-CNDS-8 55.61/ 57.03 84.78/ 86.46 

 Note: Data not available is marked as ‘- ‘ 



   

 

   

   

 

   

   

 

   

        
 

    

 

 

   

   

 

   

   

 

   

       
 

which renders it an ideal testbed for our experiments. MIT Places dataset outranks 
ImageNet (ILSVRC2016) [35] and SUN dataset [32] in terms of size. MIT Places has 
two datasets; MIT Places 205 [31], which consists of 2.5 million images from over 200 
different scene categories. Image numbers in each class range from 5,000 to 15,000. All 
classes have 2,448,873 training images with 100 images to a category for the validation 
set and 200 images to a category for the test set. On the other hand, The MIT Places365-
Standard [34] dataset has 1,803,460 training images while each class contains images 
with numbers varying ranging from 3,068 to 5,000. MIT Places365-Standard [34] dataset 
has 50 images/class as validation set and 900 images/class as a test set. Both MIT Places 
205 [31], and MIT Places365-Standard [34] datasets are scene-centric datasets, which 
matches images to labels with a scene/place name. The goal of the MIT Places dataset is 
to assist the academic goals in the field of computer vision.  

V. Experimental Environment and Approach 

Residual-CNDS version one was trained with eight convolutional layers and three 
residual connections in the main branch, and one convolutional layer of the subsidiary 
branch from scratch. In our work, we use Caffe [28], an open source deep learning 
framework created and developed by the Berkley Vision and Learning Center. We use a 
flavor of Caffe that easily adapts into the NVIDIA DIGITS deep learning GPU training 
system [33], which is another open source platform that allows users to build and exam 
their artificial neural networks for object detection and image classification with real-time 
visualization. For hardware we are running four NVIDIA GeForce GTX TITAN GPUs 
and two Intel Xeon processors with a total of 48/24 logical/physical cores and 256 GB of 
hard disk space. 

The images from our training, validation and testing dataset are resized to 256*256.  

• We subtract the average pixel for each RGB color channel, the only 
preprocessing executed.  

• We adjust the batch size of training phase to 256, while we adjust the batch 
validation size to 128.  

• We adjust epoch value to 50 and set learning rate to 0.01. We set the 
learning rate to be degraded five times during the training phase after every 

TABLE (2) 
 

COMPARISON OF THE TOP 1 & 5 VALIDATION CLASSIFICATION 

ACCURACY (%) WITH OTHER PEER REVIEWED PUBLISHED NETWORKS 

ON THE MIT PLACES365-STANDARD DATASET 
 

Network Top-1 Validation Top-5 Validation 

AlexNet [2] 47.51 78.03 

GoogLeNet [7] 50.88 81.49 

CNDS-8 [19] 50.68 81.17 

Our Model: 
Residual-CNDS-8 51.93 82.25 

Our Model: 
Residual-CNDS-10 51.92 82.42 
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10 epochs. We also adjust the decay of the learning average to half of the 
prior value.  

• We cropped the images to 227*227 from random points prior to inputting 
them into the 1st convolutional layer.  

• Next, the weight of all layers is set from Gaussian distribution with a 0.01 
standard deviation. We adapt image reflection in the training dataset, the 
only image augmentation performed.   

We trained the Residual-CNDS version one network on the MIT Places 205, which 
contains 2.4 million training elements spread across 205 scene categories. Places 205 has 
5,000-15,000 images per category. This model was validated with 100 images per 
category. Our model took two days and 14 hours in the training process. In the test 
dataset we used the epoch of the highest validation accuracy which ended up being 42 
specifically.  Furthermore, the subsidiary branch was used in the training phase while it 
was removed in the testing phase [19]. We utilized an average of the 10-crops method in 
testing phase, which gives an improvement over other testing methods [2]. Category 
labels are not available for the testing dataset and therefore the predictions that we got 
from the testing dataset were submitted to the MIT Places 205 server to acquire the test 
results as discussed in section VI. 

Next, we trained AlexNet [31], GoogLeNet [31], CNDS-8[19], Residual-CNDS 
version one and two from scratch on MIT Places 365-Standard. We also used Caffe [28] 
and NVIDIA DIGITS [33] in the training phase. We utilized the same hardware, four 
NVIDIA GeForce GTX TITAN X GPUs and two Intel Xeon processors with 48/24 
logical/physical cores and 256 GB of hard disk space. 

The images in the Places 365-Standard [34] dataset for training, validation, and 
testing are modified to have a size of 256*256.  

• We subtract the average pixel of each color channel of RGB color space, the 
only preprocessing executed. We adjust the batch size of the training phase 
to 256, while we set the batch size of the validation phase to 128.  

• Moreover, we adjust the epoch count to 30, and we set learning rate to 0.01. 
We set the learning rate to degrade five times over the course of the training 
phase after every 6 epochs. Furthermore, we adjust the decay of the learning 
average to half that of the prior value.  

• We cropped the images to 227*227 from random coordinates prior to 
passing them to the 1st convolutional layer. Next, the weight of all layers is 

TABLE (3) 
 

COMPARISON OF THE TOP 1 & 5 VALIDATION CLASSIFICATION 

ACCURACY (%) OF OUR FINE-TUNED MODEL WITH FINE-TUNED 

CNDS-8 [19] NETWORK ON THE MIT PLACES365-STANDARD DATASET 
 

Network Top-1 Validation Top-5 Validation 

CNDS-8 [19] 54.42 84.71 

Our Model: 
Residual-CNDS-8 54.82 85.71 

  



   

 

   

   

 

   

   

 

   

        
 

    

 

 

   

   

 

   

   

 

   

       
 

set from Gaussian distribution with a 0.01 standard deviation. We adapted 
image reflection in the training dataset, the only image augmentation used.   

MIT Places 365-standard [34] dataset, on which we trained AlexNet [2], GoogLeNet 
[7], CNDS-8 [19], Residual-CNDS version one and two, contains 1,803,460 training 
images and each class has images numbers ranging from 3,068 to 5,000. Places365-
Standard [34] dataset contains 50 image/classes as validation set and 900 images/classes 
as test set. AlexNet [2], GoogLeNet [7], CNDS-8 [19], Residual-CNDS version one and 
two were validated with 100 images per category. AlexNet [2], GoogLeNet [7], CNDS-8 
[19], Residual-CNDS version one and two took one day and 9 hours, one days and 6 
hours, 22 hours, one day and 4 hours, and one day and 2 hours respectively in the training 
process. Class labels of the Places 365-standard are not available for the testing dataset, 
so we are only able to report the top-1 and top-5 accuracy when performed on a 
validation set.  

Next, we used networks CNDS-8 and Residual-CNDS version one, which are pre-
trained on MIT Places 205 [31] dataset and fine-tuned on MIT Places 365-standard [34] 
dataset.  

• Epoch count is set to 20 and learning rate to 0.001. We set the learning rate 
to be degrade five times during the training phase after every 4 epochs. We 
also adjust the learning average decay to half that of the prior value.  

• We cropped the images to 227*227 from random points prior to inputting 
them into to the first convolutional layer. Next, the weight of all layers is set 
from Gaussian distribution with a 0.001 standard deviation. We adapt image 
reflection in the training dataset, the only image augmentation used. 

CNDS-8, Residual-CNDS version one took 14 hours, 18 hours respectively in the 
training process. Table (3) gives the loss and the accuracy of the networks. We report the 
top-1 and top-5 accuracy on the validation set for CNDS-8 and Residual-CNDS version 
one. 

VI. RESULTS AND DISCUSSION 

In our work, we focus on convolutional neural networks with deep supervision [19] 
and residual learning [22] for training deep neural networks. We set out to see if adding 
residual connections to the CNDS network can boost the effectiveness of the CNDS 
network. We found that residual connections are parameter free connections and only add 
a trivial amount of complexity for the collection process, which results in it having a tiny 
effect on the clarity of the network. Our experiments on the MIT Places 205 and Places 
365-Standard datasets back up our hypothesis that inserting the residual connections in 
the CNDS network will boost the accuracy of the network. We can see in table (1) that 
top-1 outcome of our Residual-CNDS version one, trained from scratch, exceeds the 
original CNDS [19] by 1.32% and 0.91% at validation and test sets respectively on Places 
205 [31]. Moreover, our models top-5 results exceed the original CNDS [18] by 0.71% 
and 0.68% at validation and test sets respectively. Our Residual-CNDS version one 
model also recorded an improvement over GoogLeNet [7] and AlexNet [2] that was 
reported by the MIT team [31] on Places 205. The performance improvements of our 
network are significant when accounting for the huge obstacles that MIT Places 205 
poses.   

We can observe in table (2) that top-1 outcome of our Residual-CNDS version one 
and two, trained from scratch on MIT Places 365-standard [34] dataset, surpass the 
original CNDS [19] by 1.25% and 1.24% in validation set for one and two respectively 
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on Places 365-standard [34]. Moreover, our model’s top-5 results surpass the original 
CNDS [18] by 1.08% and 1.25% at validation set for one and two respectively. 
Furthermore, our models (Residual-CNDS eight and ten) exceed the AlexNet [2] and 
GoogLeNet [7] in both top-1 and top-5.  

Finally, our fine-tuned (Residual-CNDS eight layers), which was pre-trained on MIT 
Places 205 and applied on MIT Places 365-standard [34] dataset, exceeds CNDS [19] by 
0.4% and 1% in top-1 and top-5 respectively. Table (3) shows the results of our fine-
tuned model. 

We can say that our proposed Residual-CNDS version one and two (eight and ten 
layers) have a better performance than currently top performing neural networks. 
Furthermore, we applied our model on very large-scale scene image datasets, which 
imposes a great challenge for any neural network, nevertheless, our proposed models still 
give good performance. Given all of the above, we are confident that our models gather 
the best of both CNDS and residual learning practices, making it easy to converge and 
override the overfitting and degradation problems.     

 

VII. Conclusion and Future Work 

We’ve hereby introduced two flavors of the Residual-CNDS network: eight and ten 
layers, in which we add residual learning using shortcut connections. In our paper, we 
implemented our models on the massive image datasets MIT Places 205 [31] and Places 
365-Standard [34], which shows that the proposed networks exceed recent high-grade 
networks in both top-1 and top-5 accuracy. Future research will focus on the impact of 
residual learning on other widespread networks including AlexNet and VGG. 

 

Acknowledgment 

Authors would like to acknowledge the support of NVIDIA Corporation for donation 
of Titan GPU used in this research. 

 

REFERENCES 

[1] J. Deng et al., “Imagenet large scale visual recognition competition 2012 (ilsvrc2012),” 2012. 

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural 
networks,” Neural Information Processing Systems, Lake Tahoe, NV, 2012, pp. 1097-1105. 

[3] Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural Computation, 
vol. 1, no. 4, pp. 541-551, 1989. 

[4] P. Sermanet et al. “Overfelt: Integrated recognition, localization, and detection using convolutional 
networks,” Int. Conf. on Learning Representations, Banff, Canada, 2014. 

[5] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional neural networks,” European 
Conf. on Computer Vision, Zurich, Switzerland, 2014. 

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”. 
Int. Conf. on Learning Representations, San Diego, CA, 2015. 

[7] C. Szegedy et al., “Going deeper with convolutions,” Conf. on Computer Vision and Pattern Recognition, 
Boston, MA, 2015. 

[8] K. He et al., “Delving deep into rectifiers: Surpassing human-level performance on imagenet 
classification,” Int. Conf. on Computer Vision, Santiago, Chile, 2015. 

[9] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deepnetwork training by reducing internal 
covariate shift,” Int. Conf. on Machine Learning, Lille, France, 2015. 

[10] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,” arXiv:1409.0575, 2014. 



   

 

   

   

 

   

   

 

   

        
 

    

 

 

   

   

 

   

   

 

   

       
 

[11] R. Girshick et al., “Rich feature hierarchies for accurate object detection and semantic segmentation,” 
Conf. on Computer Vision and Pattern Recognition, Columbus, OH, 2014. 

[12] K. He et al., “Spatial pyramid pooling in deep convolutional networks for visual recognition,” European 
Conf. on Computer Vision, Zurich, Switzerland, 2014. 

[13] R. Girshick, “Fast R-CNN,” Int. Conf. on Computer Vision, Santiago, Chile, 2015. 

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region 
proposal networks,” Neural Information Processing Systems, Montreal, Canada, 2015. 

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” Conf. 
on Computer Vision and Pattern Recognition, Boston, MA, 2015. 

[16]  Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is 
difficult,” IEEE Trans. on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994. 

[17] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks, ”  
Int. Conf. on Artificial Intelligence and Statistics, Sardinia, Italy, 2010. 

[18] C.-Y. Lee et al., “Deeply supervised nets,” arXiv:1409.5185, 2014. 

[19] L. Wang et al., “Training deeper convolutional networks with deep supervision,”  arXiv:1505.02496, 
2015. 

[20] K. He and J. Sun, “Convolutional neural networks at constrained time cost,”  Conf. on Computer Vision 
and Pattern Recognition, Boston, MA, 2015. 

[21] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks.” arXiv:1505.00387, 2015. 

[22] K. He et al., “Deep residual learning for image recognition,” arXiv:1512.03385, 2015. 

[23] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford university press, 1995. 

[24] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge university press, 1996. 

[25] W. Venables and B. Ripley, Modern Applied Statistics with S-Plus. Springer-Verlag New York, 2002. 

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” J. of Neural computation, vol. 9, no. 8, pp. 
1735–1780, 1997. 

[27] M. Abadi et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” 
arXiv:1603.04467, 2016. 

[28] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embedding, ” arXiv:1408.5093, 2014. 

[29] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A MATLAB-like environment for machine 
learning,” Conf. on Neural Information Processing Systems: BigLearn Workshop, Granada, Spain, 2011. 

[30] F. Chollet. “Keras”. GitHub repository, https: //github.com/fchollet/keras, 2015. 

[31] B. Zhou et al., “Learning Deep Features for Scene Recognition using Places Database,” Conf. on Neural 
Information Processing Systems, Montreal, Canada, 2014. 

[32] J. Xiao et al., “SUN Database: Large-scale Scene Recognition from Abbey to Zoo,” Conf. on Computer 
Vision and Pattern Recognition, San Francisco, CA, 2010. 

[33] NVIDIA DIGITS Software. (2015). Retrieved April 23, 2016, from https: //developer.nvidia.com/digits. 

[34] Zhou, B., Khosla, A., Lapedriza, A., Torralba A. & Oliva, A. Places: An Image Database for Deep Scene 
Understanding”, Arxiv, 2016. 

[35] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., 
Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet large scale visual recognition challenge. CoRR, 
abs/1409.0575, 2014. 

 


