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Abstract: In this work we propose a fusion methodology that takes advantage of
multiple deep convolutional neural network (CNN) models and two color spaces
RGB and oRGB to improve action recognition performance on still images. We
trained our deep CNNs on both the RGB and oRGB color spaces, extracted and
fused all the features, and forwarded them to an SVM for classification. We
evaluated our proposed fusion models on the Stanford 40 Action dataset and the
People Playing Musical Instruments (PPMI) dataset using two metrics: overall
accuracy and mean average precision (mAP). Our results prove to outperform the
current state-of-the-arts with 84.24% accuracy and 83.25%mAP on Stanford 40
and 65.94% accuracy and 65.85% mAP on PPMI. Furthermore, we also evaluated
the individual class performance on both datasets. The mAP for top 20 individual
classes on Stanford 40 lies between 97% and 87%, on PPMI the individual mAP
class performance lies between 87% and 34%.
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1 Introduction

With the rise of search engines technology and its pervasive use to obtain information about
literally everything, action recognition, which With the rise of search engines technology
and its pervasive use to obtain information about literally everything, action recognition,
which finds direct application in information retrieval, becomes more relevant than ever.
Over the recent years, deep learning in computer vision has gained significant advances in
solving many image classification problems. These successes have led to applications in
various domains: traffic and vehicle surveillance (2), biomedical image classification (3),
remote sensing (1), robot navigation (5), and food product quality inspection (4).

As image classification, object detection, and action recognition are closely intertwined
problems, advances in any one of these help to improve the other two areas. The annual
Imagenet Large Scale Visual Recognition Challenge (ILSVRC) (7) is one of the most
popular arenas on which researchers present their new and innovative methods. With the
success of AlexNet (8) in 2012, deep convolutional neural networks (CNN) have enjoyed
rising popularity as more researchers dedicated their works on it. The best performing groups
on ILSVRC in 2013, 2014, and 2015 used a type of deep learning as their primary methods.
Following this trend, we draw inspiration from these top performance deep learning models,
namely GoogLeNet (13), VGGNet (16), and Residual Nets (17). We build our proposed
models by fusing these three deep learning models.

We aim to improve action recognition performance in still images. We show the
following: (1) That fusion of the multiple deep learning models improves classification
performance as these collective vectors show superior discriminatory power over individual
model, (2) That training these models on the oRGB color space dataset and adding their
extracted features further improve the performance.

The following describes the organization of this paper: Section II discusses previous
works on action recognition, section III presents a brief review on GoogLeNet, VGGNet,
and ResNet, section IV describes the datasets we used in our experiments, section V presents
the details of our methodology, section VI includes our experiments and results, and finally
section VII concludes the paper and discusses future work.

2 Related works

The publicly available action recognition datasets are either in the form of videos or still
images. Video-based action recognition have received more attention lately, although studies
dedicated to its still image-based counterpart is not too far behind. The most popular action
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recognition method uses object detection and image segmentation. This method commonly
makes use of the annotations provided on the datasets to generate human bounding boxes
that facilitate action classification.

Fusion of multiple features have been studied as a consistent way to improve action
recognition performance (24), (25), (37). The idea is that by aggregating more features we
can collect more information that we can use to better characterize the action. Additionally, it
is expected that multiple features would complement each other, which then would improve
upon the discriminatory power of the individual model.

Simonyan and Zissserman (18) proposed two-stream spatiotemporal networks that take
advantage of the temporal information contained in the sequence of video frames while
also processing the spatial information as regular CNNs do. The model takes video frames
as input and decompose them into their space and time components. Note that “space"
or “spatial" refers to a single video frame that is effectively treated as a still image, and
“time" or “temporal" component refers to the motion captured in multiple video frames,
thus preserving the continuity between the frames. The two components become separate
networks (streams) that perform video action recognition. While the spatial stream operates
like a usual CNN, the temporal stream employs optical flow stacks to determine motion
between video frame sequences. Both streams’ CNN architecture take the form of VGG-
CNN-M-2048 (5 convolutionals, 3 fully-connnected layers) as proposed in (19). To apply
fusion, Simonyan and Zisserman conducted separate experiments: 1) by taking the average
of both networks’ softmax score results, and 2) by extracting the two networks’ softmax
layer features and applying multi-class linear SVM on these vectors.

Rosenfeld and Ullman (20) employs the fusion method to extract features from the
following: 1) the global average pooling layer of VGG-GAP (30), 2) the FC6 layer of
VGG-16 (16), and 3) the pool5 layer of ResNet-151 (17). The extracted features are used
to accomplish the first of the two steps in their action classification process. Their overall
method consists of: 1) concept recognition, and 2) action recognition. The first step uses
an additional dataset called “concept" dataset that contains numerous images labeled with
common concepts or keywords. This concept dataset is used primarily to train a classifier
purposed to recognize common concepts (thus called concept classifier). Using the images’
extracted features, the concept classifier is used to generate concept score vectors. The
second step is the actual action classification and uses the action dataset. The concept score
vectors are used to train another classifier that performs action classification on the targeted
action dataset.

It is also common to use a combination of image segmentation and action mask to
improve accuracy. Zhang et al. (26) proposed the use of action mask to isolate the human-
object interaction from the background, claiming that accurate action recognition can be
done without the help of human bounding box. Based on the observation that interaction
between object parts hold significant clues regarding the action in the image, the action mask
is obtained by 1) generating objects using selective search (27), 2) extracting the object
parts, and 3) discovering the dependency and association of these parts using the image
pixel RGB values, which is based on the assumption that spatially close objects are related
to each other. The resulting action mask is a minute shape of the human-object interaction.
Action presentation is constructed by taking the action masks to weed out object proposals
generated in the very first step, concatenating all the object parts into high-dimensional
Fisher vectors, and performing product quantization (28). A one-vs-all linear SVM is learned
to perform action classification.
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Zhao et al. (38) proposed a "generalized symmetric parts model" (GSPM) that improves
upon the traditional method bag-of-words (BoW) (9) to locate semantically meaningful
regions, primarily because the features in this region are more discriminative. The overall
framework includes several steps: 1) edge detection, 2) region segmentation, 3) mask
generation, 4) feature extraction, and 5) BoW model creation. GSPM, which is developed
independently, is used on step 3 to generate action masks. GSPM is based on two statistically
supported observations: 1) that hands and feet (or arms and legs) are two pairs of body
parts that contribute significant clues regarding an action; hence the “symmetric" aspect
of GSPM mainly refer to these pairs, and 2) that semantically meaningful regions enclose
these symmetric parts, as suggested by the close spatial relationship between them. The
symmetric pairs’ location are used as foci for ellipses to model the interaction between
them. Zhao et al. added one more element, “spine," which refers to the distance between
the symmetric pairs. These three elements are used to distinguish actions as the ellipse
size and the spine length would vary for each action. Zhao et al. employs four types of
feature representations: the 7 scale SIFT (10), color name (CN) (37), early fusion between
the shape resulting from SIFT and color from CN, and late fusion between the shape and
color, which is done after vocabulary assignment. Steps after feature extraction follow the
traditional BoW method.

3 Overview of our base deep learning models

Our fusion method uses deep CNNs as base. We chose the winners of the ILSVRC 2014
and 2015: GoogLeNet, VGGNet, and ResNet. The following presents an overview of each
deep CNNs and also the CNN model version that we ended up using for our fusion.

3.1 GoogLeNet

The winner of ILSVRC 2014, "GoogLeNet" (13), is developed based on two main ideas:
1) sparsity (14), and 2) dimensionality reduction. The sparsity principle is based on a study
showing that given a sparsely structured network, we can optimally build a network topology
by analyzing the output and correlation of clustered neurons. We create the succeeding
layer’s units by grouping highly-correlated neurons. Computation is performed by the dense
matrices covering the newly-created sparse units.

The second principle, dimensionality reduction, is one of the most common techniques
in machine learning. Its application in Inception-v1 is inspired by Network-in-Network (15),
which introduces 1x1 convolutional kernels that perform both dimensionality reduction and
feature maps computation across multiple channels.

The Inception-v1 block consists of 1x1, 3x3, 5x5 convolutions and a 3x3 max pooling
layer that are arranged in parallel. The 1x1 kernel precedes the 3x3 and 5x5 convolutional
layers and succeeds the 3x3 max pooling layer. Each convolution includes the rectified
linear unit activation.

GoogLeNet also employs two auxiliary classifiers in the form of a small convolutional
networks with a dropout ratio. During training the auxiliary classifiers generate two loss
functions that are concatenated with the final loss function at the end of the overall network.

The overall GoogLeNet architecture that we used in our experiments consists of multiple
Inception modules with some max pooling layer inserted between the Inception modules,
an average pooling layer (as suggested in (15)) to avoid overfitting, a fully connected layer,
a dropout layer, and a softmax layer.
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3.2 VGGNet

The VGGNet (16) achieved second place at the ILSVRC 2014. It is a uniform deep network
(16 and 19 layers) that employs 3x3 receptive fields throughout the whole network. The use
of 3x3 kernel serves two purposes: 1) to increase the discriminative power of the rectified
linear activation since using 3x3 requires having more layers (two or three layers as opposed
to one, as in the case of 7x7 kernel), and 2) to decrease the number of parameters.

In our work, we chose to use the 19-layer version, although we did a preliminary
benchmarking using the 16-layer version. The 19-layer model consists of two blocks of two-
layer 3x3 convolutions, three blocks of four-layer 3x3 convolutions, several max pooling
layers before and after these convolution blocks, three fully connected layers, and a softmax
layer.

3.3 Residual Network (ResNet)

The current state-of-the-art and winner of ILSVRC 2015, the Residual Networks or ResNets,
is one of the deepest neural networks, if not the deepest with its current incarnation of
1001 layers (33). ResNet (17) employs skip connections that perform identity mapping
to achieve the desired output. For each residual unit, an input x is connected to a weight
layer. This connection is branched: one branch undergoes a residual function F(x) and then
the activation function, while another bypasses all these weight layers, hence the name
âŁœshortcut" or âŁœskip" connection. Since x retains its value by skipping the function,
it is called âŁœidentity." The purpose of this identity shortcut path is identity mapping,
allowing x to add to F(x), thus forming F(x) + x. He et al. argued that this method offers an
easier way to optimize the network, mainly because we only need to add the learned output
of the stacked layer (the "residual"), to the identity x to get the desired output.

The residual network implementation inserts batch normalization (BN) (32) between
each convolution and rectified linear unit. The purpose is to reduce the internal covariate
shift, that is, the changes on input distribution in layers resulting from changes on activation
values during training. In deep neural networks such as residual network, a small change
in activations and input distribution in early epochs could lead to great changes in the later
epochs, which in turn would impact accuracy. BN provides a solution by normalizing each
mini-batch.

Based on depth, ResNet comes in many variations. We used the 50, 101, and 152 layers
since we wanted to take advantage of the increased depths as we expected them to yield
better results.

4 Description of Datasets

4.1 Stanford 40 Action Dataset

We used the Stanford 40 Actions dataset (6) to evaluate our models. The dataset has 40 action
classes on activities such as washing dishes, playing a violin, playing a guitar, cooking,
running, riding a horse, etc. Stanford 40 Action consists of 9,532 images, with 4,000 images
for the train set and 5,532 for the test set. Since it does not come with a validation set, we
took 800 images from the training set to make up a validation set. Thus, we have 3,200
images for training, 800 images for validation, and 5,532 images for testing.
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Figure 1 Example images of Stanford 40 Actions dataset (6).

Our train/validation sets have uniform number of images per class, with the train set
having exactly 80 images per class and our validation having 20 images per class. The
train/validation images vary in resolutions (the smallest is 200x200 and largest 989x600)
and sizes, ranging from about 4KB to 170 KB. Unlike the train/validation sets, our test
set has different image count per class, ranging from 82 to 196 images. The test images
also have various resolutions (the smallest is 200x200 while largest is 997x600) and sizes
(smallest is 5KB and largest 156KB).

Stanford 40 is known as one of the most challenging still image action recognition
datasets, mainly due to its large number of categories, various occlusions, angles, visibility,
poses, and background clutter. Fig. 1 depicts example images of the Stanford 40 Actions.
We see a large variety of background clutters and human body part visibility as many images
show only certain body parts and not the whole body. Another thing to note is that certain
small interactive objects such as phone or cigarettes are often wrapped in a person’s fingers,
which adds to the level of occlusion. However, there are certain interactive objects that are
almost always fully visible, or at least sufficiently visible to be recognized due to its bigger
size. Examples of these include horse, fishing rod, and bike. As we see later, this element
would have impact on individual class accuracy.

4.2 PPMI dataset

The second dataset we used is the People-playing-musical-instruments (PPMI) dataset (34).
The images capture humans and their interaction with twelve different musical instruments:
bassoon, cello, clarinet, erhu, French horn, harp, recorder, flute, guitar, violin, trumpet, and
saxophone. The 12 types of instruments are being portrayed twice: in one image it is being
played by a human (labeled PPMI+), and in another it is merely being held by a human
and not played (PPMI-). There could also be multiple different instruments and multiple
people in the images. For our experiments, we treat each instrument’s PPMI+ and PPMI-
images as different classes. Thus, since we have 12 types of instruments and each type has
a PPMI+ and PPMI- images, we have 24 classes.

The PPMI dataset consists of 4,209 total images. We used 1,686 images for our train
set, 424 images for validation, and 2,099 images for test. The number of image per class
varies in all train, validation, and test sets. We used between 55 to 80 images per class for
training, 14 to 20 images per class for validation, and 64 to 100 images per class for testing.
Like Stanford 40, PPMI’s image resolution and size come in a great variety as well. The
smallest resolution is 66x100 with 3KB while the largest 4288x2848 with 1.1MB.
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5 Proposed Deep Convolutional Neural Network Fusion Methodology

In this work, we propose a methodology that is built upon the late fusion of features extracted
from different deep convolution neural networks (CNNs) on multiple color spaces. With
this methodology, we examine the power of heterogeneous fusion of deep neural networks
and color spaces. In particular, GoogLeNet, VGG-19, ResNet-50, ResNet-101, and ResNet-
152 are separately benchmarked for two aforementioned action datasets with pre-trained
weights that each net has learned on the ImageNet dataset.

5.1 Color Spaces and Color Fusion

Each deep CNN will be trained on two color spaces: the common color space RGB and the
opponent color space oRGB. The oRGB color space has proven its discriminative power
via texture features on KTH-TIPS2 material datasets and MIT scene dataset in the work
of Banerji et al. (35). As each color space carries different characteristics and prevails on
selective visual task, this work will evaluate the role of oRGB and the power of its fusion
with RGB in the fusion of learned features from convolution neural networks.

While the fundamental RGB color space is composed of three color components that are
closed to red, green, and blue wavelengths, oRGB is built on three psychological opponent
axes: white-black, red-green, and yellow-blue. The original oRGB is derived from RGB in
two steps. The first step linearly transforms RGB to a color space of 3 axes: white-black,
yellow-blue, and magenta-red/cyan-green. The second step does a rotation around the first
axis to finally create a true opponent color spaces (36). Similar to (35), the second step is
omitted in this work for computational simplicity. Thus, three color channels L, C1, and C2

of oRGB are transformed from RGB as follows:

L = 0.2990R+ 0.5870G+ 0.1140B
C1 = 0.5000R+ 0.5000G− 1.0000B
C2 = 0.8660R− 0.8660G

(1)

5.2 Image Preprocessing

As raw images of both datasets are captured in varying resolutions, standardizing image
size is required before they are fed into any CNN. Whole color images on either RGB or
oRGB color space are uniformly squashed into a fixed 256x256 size. Although both datasets
are provided with annotated bounding boxes around actions, we decide to experiment on
the whole image to preserve action background. The decision was made after comparisons
of individual CNN performance on whole images against bounding boxes, with the CNNs
trained on whole image outperforming those trained on bounding boxes. Each CNN
implicitly crops squashed 256x256 images to 224x224 before passing them through its
convoluted layers. Fig. 2 shows sample pre-processed images from PPMI dataset on both
RGB and oRGB color spaces.

5.3 CNN Feature Extraction

For each net that was trained on a specific color space for a dataset of n actions, we choose to
extract features from either the last fully connected (FC) layer or the softmax layer for two
reasons. First, these layers consistently output n-dimension vector for each image across
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Figure 2 Example pre-processed images of PPMI dataset (34) on RGB and oRGB color spaces.

Figure 3 Overview of proposed color fusion deep learning methodology.

CNNs. Secondly, our preliminary experiments showed that features extracted from these
late layers significantly yield better results than those from preceding layers.

The final feature is created by concatenating extracted n-D features of different CNNs
on one or both color spaces. As extracted feature size is identical for all nets, the roles
of individual CNNs in each feature fusion are all equal. Performance of each fusion is
evaluated by one-versus-one SVM classifier via two metrics: overall accuracy and mean
average precision (mAP). The overview of the proposed architecture is illustrated in Fig. 3.
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Table 1 Performance of individual CNN models vs. proposed fusions on RGB

Models Stanford 40 PPMI

Acc (%) mAP (%) Acc (%) mAP (%)

V 76.68 75.68 59.31 59.46
G 76.65 75.45 59.46 59.63
R50 79.32 78.20 55.93 55.96
R101 81.72 80.84 61.36 61.41
R152 81.38 80.53 60.36 60.56

(Proposed Fusion Model)
V+G+R50 81.63 80.59 62.56 62.64
V+G+R50+R101+R152 83.69 82.64 64.94 64.93

6 Experimental Setup, Results, and Discussion

Preliminary benchmark experiments of each CNN model are run on Caffe (11), an open
source deep learning software framework developed by the Berkeley Vision and Learning
Center. The hardware configuration of our system consists of two NVIDIA GeForce GTX
TITAN X GPU with 12GB of VRAM each and two Intel Xeon processors E5-2690 v3
2.60GHz with a total of 48/24 logical/physical cores and 256 GB of main memory.

Experiments are organized in three sets, each toward specific goal. The first set of
experiments examines performance of different CNN feature fusions on RGB. The second
set considers discriminative power of color fusion between RGB and oRGB for each
individual CNN model. The last set applies fusion on all five models and two color spaces.
All experiments are conducted on both datasets: Stanford 40 and PPMI.

6.1 CNN Model Fusions

The first set of experiments focuses on examining the late fusions of features extracted from
VGG-19 (V), GoogLeNet (G), and three ResNets: ResNet-50 (R50), ResNet-101 (R101),
and ResNet-152 (R152) on RGB color space for both Stanford 40 and PPMI datasets.
Performances of two model fusions V+G+R50 and V+G+R50+R101+R152 are evaluated
against individual CNN models. Performance of each single model and each fusion are
measured in overall accuracy and mean average precision and recorded in Table 1. In
addition, performance measurements of Stanford 40 dataset are represented in Fig. 4 for
clearer visualization of the improvements of fusions over their individual models.

It is obvious to recognize that all model fusions outperform their component CNN
models. In particular, both each fusion improves at least 2% overall accuracy and mean
average precision over component models on Stanford 40. For PPMI, the improvement of
model fusion is more significant as it achieves more than 3% gain in both performance
metrics. Although large ResNets such as ResNet-101 and ResNet-152 give equivalent
performance compared to the small fusion of ResNet-50 with GoogLeNet and VGG-
19, V+G+R50, fusing these robust ResNets with the small fusion V+G+R50 continues
to achieve significant improvement over the single robust nets. This result indicates that
investigation on late CNN model fusions holds a promising future.
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Figure 4 Accuracy(%) and mean Average Precision(%) comparison between individual VGG-19
(V), GoogLeNet (G), ResNet-50 (R50), ResNet-101 (R101), and ResNet-152 (R152)
models with proposed fusion models [V + G + R50] and [V + G + R50 + R101 + R152]
for Stanford 40 dataset on RGB.

6.2 Color Fusion on CNN Models

Experiments in this section scrutinize late fusions that are created by features of individual
CNN models on two color spaces: RGB and oRGB. In other words, a model X will be
trained and tested on both color spaces. Extracted features of model X on RGB will be
concatenated with those of model X on oRGB to form an RGB+oRGB fusion of model
X. Comparison of mAP performance of color fusion of all five CNN models against each
individual model on a color space are illustrated in Fig. 5.

One known drawback in this experiment set is that CNN models are trained on oRGB
with pre-trained parameters learned on RGB ImageNet dataset. It could be the reason why
performance of any model on oRGB is far worse than that on RGB. It may have weakened the
performance of color fusion in this experiment set. However, empirical results still indicate
the improvements of color fusion over performance of any model except GoogLeNet on
RGB for both datasets. For Stanford 40, improvement of color fusion is approximately 0.5%
on strong models such as ResNet-101 and ResNet-152 and very little on weak models.
However, improvement of color fusion is significant with 1-2% mAP increment on PPMI
dataset.

6.3 Evaluation of Color and Model Fusions

In this final set of experiment, we combine the ideas that we have elaborated separately in
previous sections: model fusion and color fusion. In this experiment we propose a final fusion
of 10 models formed by all five models on two color spaces: RGB and oRGB. Performance
of this 10-model fusion will be evaluated against the 5-model fusion on RGB that was
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Figure 5 Mean Average Precision(%) comparison between proposed RGB and oRGB color fusion
and separate colors for each individual CNN model on two datasets: Stanford 40 (left)
and PPMI (right).

Table 2 Comparison with other methods on Stanford 40 (in mAP and overall accuracy)

Model Accuracy mAP

Yao and Fei-Fei (6) - 45.70
Khan et al. (22) - 75.40
Zhao et al. (23) - 78.80
Sharma et al. (21) - 72.30
Zhang et al. (26) - 82.64
Rosenfeld and Ullman (VGG-GAP + VGG-16) (29) 81.74
Rosenfeld and Ullman (VGG-16 + ResNet-152) (20) 83.12

5-model fusion on RGB (Proposed) 83.69 82.64
10-model fusion on RGB and oRGB (Proposed) 84.24 83.25

examined in the first experiment set and against previous works by other methodologies in
Table 2 for Stanford 40 and Table 4 for 24-action PPMI.

6.3.1 Stanford 40

First of all, 10-model fusion on RGB and oRGB surpasses 5-model fusion on RGB by
approximately 0.5% for Stanford 40 in both performance metrics. The proposed 10-model
fusion outperforms the best individual CNN model, ResNet-101, by approximately 2.5% in
both overall accuracy and mean average precision. Our final fusion model surpasses the best
overall accuracy in the work that was based on the fusion of VGG-16 and ResNet-152 of
Rosenfeld et al. (20) by more than 1.1%. The proposed model also outperforms the current
highest mean average precision that was achieved by Zhang et al.(26). This performance
gain shows that we could collect more features by using 10 deep CNN models; features that
improve discriminatory power but may be overlooked by using individual model or two
models.

We also evaluated our model’s performance on each Stanford 40 class. Looking at the
accuracy column on Table III we see that the highest accuracy is achieved in class “riding a
horse" with 97.96. High accuracy in “riding a horse" could be explained by the majority of
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the images in the class having full body visibility for both the human and horse, although
the poses still vary. Background may also play a role, considering that people usually ride
horses in an open field. This significance of background features is the reason we opted to
use the whole image and not cropped bounding boxes during preprocessing.

Additionally, the horse’s high visibility may add significant clue as well. The importance
of aspect can be observed in another class that also involves horses: “feeding a horse." This
class has only 94.65% accuracy, which is slightly lower than “riding a horse," although still
achieves high accuracy. We think that this is because of the images’ lower visibility and
occlusions. Some only depict the upper part of the human body and many only show the
horse’s head as its body is hidden behind fences. The human in many of these images are
also occluded.

The class with second highest accuracy is “climbing" with 97.95. Reiterating the
significance of visibility, we notice that the majority of images in “climbing" gives a full
view of the human body. To generalize further, we observe that visibility on either human
body parts or the interactive object can improve or weaken accuracy results as they offer
significant cues for the corresponding action. We see that most images in the top 20 classes
on Table III have high degree of object visibility with some almost always in full view,
which offers important cues in recognizing the action.

Actually, some classes such as “climbing" and “jumping" even require consistent full
view of the human body for us to justify the ground truth image label. Showing only the
upper part of the human body and labeling that the image belongs to a “jumping" class
makes little sense. Furthermore, it also helps that interactive objects of the top 20 classes
such as horse, microscope, wall, bike, fishing rod, car, bow, violin, guitar, umbrella, dog,
floor, board, TV, cart, and tree are bigger in size, which increases their level of visibility. To
put it another way, their relatively bigger size limits their level of occlusion. For instance,
we cannot justify the ground truth label of an image as "fishing" if we cannot see much of
the fishing rod.

Looking at the lowest of the top 20 classes, "fixing a bike" with 85.94, we think this
lower accuracy is due to the images showing partial bike or even only the wheel. The
background of many of these images also varies as the action seems to occur in almost
random background setting. This, as we observe, can impede classification accuracy.

On another extreme, we observed that many images of the lowest 20 classes have object
occlusion. Classes such as “texting message," and “smoking" contain images with high
degree of occlusion on the interactive object (phone or cigarette). Due to their relatively
small size compared to human hands, being wrapped in a person’s fingers covers much of
the object. In contrast, objects such as fishing rod and bow, which are also wrapped in a
person’s fingers are still visible since they are bigger relative to the human hands.

6.3.2 PPMI

The proposed 10-model fusion on RGB and oRGB significantly outperforms the current
state-of-the-art with more than 14% gain in mean average precision on PPMI dataset (Table
4). It also surpasses the 5-model fusion on RGB by approximately 1% and surpasses the
best single CNN model, ResNet-101 (Table 1) by approximately 4.5% in both performance
metrics. Results of experiment set prove the robust improvement of our color and CNN
model fusion over the BoW framework and fusion of engineering feature in the prior work
(37; 38).
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Table 3 Accuracy and mAP for top 20 action classes of Stanford 40 using proposed 10-model
fusion on RGB and oRGB

Action Accuracy mAP

playing guitar 95.24 97.42
riding a horse 97.96 96.78
feeding a horse 94.65 96.58
playing violin 95.63 95.99
riding a bike 96.89 95.96
holding an umbrella 95.83 95.66
climbing 97.95 95.15
walking the dog 94.30 93.21
cleaning the floor 93.75 92.59
fishing 89.60 92.51
looking through a microscope 93.41 92.46
watching TV 92.68 92.39
writing on a board 92.77 91.21
shooting an arrow 92.11 91.01
rowing a boat 95.29 90.77
jumping 87.69 90.03
fixing a car 96.03 89.98
pushing a cart 87.41 88.55
cutting trees 86.41 88.28
fixing a bike 85.94 87.13

Overall 84.24 83.25

Table 4 Comparison with other methods on 24-action of PPMI

Model Accuracy mAP

Zhao et al. (CF) (38; 37) 46.70
Sharma et al. (Dsal) (39) 49.40
Zhao et al. (GSPM) (38) 51.70

(Proposed Fusion Model)
5-model fusion on RGB 64.94 64.93
10-model fusion on RGB and oRGB 65.94 65.85

Individual action performance of PPMI

For each instrument, playing action performs far better than non-playing gesture according
to empirical results for individual action performance of PPMI in Table 5. The first column
in the table records action IDs that are labeled by two concatenated IDs: the ID for the
instrument and the ID for specific activity with the instrument. Instrument ID is labeled from
1 to 12 to specify 12 instruments. There are only two activity IDs: 0 for playing an instrument
and 1 for being with an instrument. Following the action ID convention, it is simple to
compare performance of "play" against "with" each instrument and identify that "play"
tremendously outperforms "with" for most individual instruments. For some particular
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Table 5 Individual action performance on PPMI using proposed 10-model fusion on RGB and
oRGB

Action ID Action Accuracy mAP

1.0 play bassoon 83.91 72.45
2.0 play cello 75.27 77.96
3.0 play clarinet 45.05 49.67
4.0 play erhu 82.11 77.91
5.0 play flute 69.32 67.07
6.0 play frenchhorn 67.05 68.52
7.0 play guitar 89.00 86.35
8.0 play harp 84.85 84.37
9.0 play recorder 55.17 55.48

10.0 play saxophone 77.78 70.46
11.0 play trumpet 50.53 50.87
12.0 play violin 84.38 82.64

1.1 with bassoon 40.74 50.98
2.1 with cello 70.79 71.41
3.1 with clarinet 34.18 34.03
4.1 with erhu 59.74 67.71
5.1 with flute 59.38 54.98
6.1 with frenchhorn 73.24 73.69
7.1 with guitar 55.56 66.04
8.1 with harp 86.73 87.04
9.1 with recorder 32.00 36.26

10.1 with saxophone 75.58 77.93
11.1 with trumpet 50.57 55.65
12.1 with violin 57.14 61.01

Overall 65.94 65.85

instrument such as guitar, playing the instrument surpasses being with the instrument by
more than 33% in accuracy and 30% in average precision.

As was mentioned in sub-section 5.2, we decided to use full images with background in
our methodology to achieve the best performance. The idea of preserving action background
is reinforced by the current observation on performance of "play" against "with." Action
background is an important factor to explain why playing an instrument usually performs
far better than being with an instrument. People usually play an instrument in some specific
scenarios, thus, images of "play" actions are captured with sufficiently relevant background.
Meanwhile, in "with" actions, instruments can be with people anywhere and the background
contributes less in recognizing the actions. Another factor to explain weak performance of
"with" instruments is the lack of precise human gesture in those actions. In other words,
being with an instrument is a broad concept with a large range of human gestures such as
standing, sitting, and holding as long as the instrument exists.

Additionally, the confusion matrix in Fig. 6 further provides a visualization of action
performance relation on PPMI, especially with the arrangement of actions by instrument
and activity in our work. The color legend indicates that light blue shades represent low
percentage and dark blue for high percentage toward 100%. Beside the expected dark
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Figure 6 Confusion matrix of proposed 10-model fusion on PPMI dataset.

diagonal that indicates high percentages of correctly classified actions, two mid-diagonals
of the bottom left and top right half matrices carry interesting information. The bottom left
mid-diagonal shows that playing each particular instrument is commonly misclassified as
being with the instrument. The top right mid-diagonal specifies the percentage that "with"
an instrument actions are misidentified as playing the instrument. It means that it is hard to
accurately identify "play" against "with" and vice versa for each specific instrument.

t-SNE of 10-model vs. ResNet-152

Lastly, t-Distributed Stochastic Neighbor Embedding (t-SNE) (12) is applied to visualize the
discrimination of features in the proposed 10-model method. In short, t-SNE is a technique
for dimensionality reduction that is well suited for visualization of high-dimensional
datasets. Fig. 7 shows t-SNE visualization of CNN features that are extracted from 24-action
PPMI test dataset by the proposed 10-model method and the most complex individual CNN
model, ResNet-152, side by side. From this image we can see that the proposed 10-model
method generates a more distinctive separation of action clusters such as play harp against
with harp, play cello against with cello, and play/with guitar against others compared to
those of the individual ResNet-152.
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Figure 7 t-SNE (12) visualization of proposed 10-model fusion (left) vs ResNet152 (right) on
PPMI

7 Conclusion and Future Work

We have examined the fusions of high performing deep CNN models and two color spaces
to prove the performance improvements of fusions by CNN models, by color space, and by
the combination of both CNN models and color spaces. We have proposed a final 10-model
fusion method that are built upon five CNN models: GoogLeNet, VGG-19, ResNet-50,
ResNet-101, and ResNet-152 and two color spaces: RGB and oRGB. Our final fusion model
achieves a gain of more than 2.5% and 4.5% on Stanford 40 and PPMI respectively over the
best single CNN. This improvement also boosts our proposed methodology performance
beyond other prior works for both mentioned datasets.

In addition, we have emphasized the role of background in identifying an action. In
the future work, we can advance our fusion technique to combine features from full image
with those from bounding boxes. Proposed algorithm provides an effective paradigm that
can be applied to a broad range of applications such as police body worn camera, security
surveillance, and neighborhood watch program.
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