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Abstract— Smart video based traffic monitoring and 
surveillance systems for improved security rely upon 
sophisticated deep learning based computer vision algorithms. In 
this paper we propose a novel deep learning model to 
automatically recognize cars on large-scale grand challenge 
CompCars dataset.  Such a task for a computer is difficult due to 
its fine-grained nature and achieving recognition accuracy close 
to human experts remains a challenge due to lack of big dataset 
and machine learning model to detect delicate nuances. Our 
proposed deep CNN hybrid architecture outperforms previously 
published classification accuracy by 2.52%, which is a significant 
improvement considering the challenging nature of the dataset. 

Our method suggests several novelties and advantages over 
existing methods: First, it uses the GoogLeNet’s key architecture 
- inception modules to efficiently exploit the inception’s 
dimension reduction power and to lower the network cost. 
Second, inspired by the VGG’s uniform and powerful 
architecture, the method replaces GoogLeNet’s auxiliary 
classifiers into deeper networks with 3x3 convolution components 
to increase its recognition capability. Third, it is a powerful and 
efficient network in the way that it represents the ensembles of 
multiple short and medium depth networks. We believe our 
method could be useful in other domains that require fine-
grained recognition. 

Keywords— deep learning; GoogLeNet; VGG Net; relay 
backpropagation; transfer learning; fine-grained recognition  

I.  INTRODUCTION 
In recent years deep learning has achieved tremendous 

success in various computer vision tasks. Convolutional neural 
networks (CNNs) can extract rich features from images and 
has been instrumental in driving p rogress in image 
recognition. In the past few years, training deep convolutional 
neural networks on large scale dataset such as ImageNet [1] 
has shown to drastically improve computers’ visual detection 
and recognition capabilities. 

Deeper neural networks are expected to result in better 
performance. However, simply  adding more layers can lead  to 
performance degradation. The increase in the size of a neural 
network results in several challenges. The problems with 
deeper neural networks are: 1) increasing the number of layers 
results in growth of parameter size and neural network train ing 
faces divergence or slow convergence, and is prone to 

overfitting [2]; 2) issue of vanishing or exp loding grad ients 
relates to gradients becoming either very large or small after 
the backpropagation step as the error signal propagates back 
across many layers. This leads to poor adjustment of weights 
and degradation in performance [2]. 

Prior attempts made in order to address the 
aforementioned issues either apply optimizat ion techniques 
such as refined in itializat ion scheme and batch normalizat ion 
[18] or modify the network architecture by adding auxiliary  
classifiers to effectively reinforce information at various 
points in the network [23]. Several recently proposed deep 
networks such as VGG Net [3], GoogLeNet [4], ResNet [5], 
CNDS [23], Dense Net [24], Residual-CNDS [25], VNXK and 
CKML [26] address the aforementioned issues and achieve 
significant progresses in image recognition and classification. 
R-CNN [6] showed great improvements in  object detection by 
adopting two streams of CNNs, one for objects proposal and 
another for classifications. 

Object classification at first level of class hierarchy with 
highly dissimilar object classes has proven to be successful. 
With advances in CNN models, recently many researchers 
gained interest in exploring fine-grained classification, or fine-
grained visual recognition (FGVR) [7], where the object 
classes are closer to each other in terms of visual features [26]. 
This is a novel and challenging task of great significance. 
Furthermore, it is much more difficult to distinguish between 
classes at levels lower down in the hierarchy, i.e., sub-classes 
compared to classes at the first level. The difference across 
sub-classes is usually subtle and requires expert knowledge. 

Fueled by recent advances in the Convolutional Neural 
Networks, majority of previous work adopts end-to-end CNN 
scheme [7]. Popular fine-grained classification datasets are 
relatively small: Flowers dataset [8] with 102 different types 
of flowers common in United Kingdom, Caltech-UCSD birds-
200-2011 [9] dataset contains 11, 788 images spanning 200 
sub-species, Stanford dogs [10] consists of 20,580 images, 
FGVC aircraft  dataset [11] contains 10,000 images from 100 
classes of aircraft. Saliency-based sampling for fine-tuning 
upon VGG-VD network is used in [22]. It combines fully  
connected layer and spatially weighted fisher vector to achieve 
84.54% accuracy on Birds and 71.96% on Dogs datasets. 
Vehicle model dataset [12] comprises of 3,210 vehicle images 



with 107 vehicle models, and 30 images of various colors and 
illuminations are captured fo r each  model. The authors in [12] 
construct local tiled CNN based Histogram of Grad ients 
(HOG) [13] features of the frontal view of the car images. 
However, the recognition task using frontal car image contains 
the car logo and is easier task compared with using the entire 
car outlook under various viewpoints, and thereby it is of 
limited practical use. 

Fine-grained classificat ion is in-depth computer 
recognition and it is challenging for two reasons. First comes 
from the task itself that the classes are similar and their 
differences are subtle, thus it is necessary to extract highly 
distinctive features to achieve good sub-class categorization. 
Typically, there are two sub-problems that need to be 
addressed: localization and feature representation of the 
distinctive parts. Second reason is it is known that not having 
enough training data leads to overfitting. Very large scale fine 
grained datasets are not publicly availab le, which could  match 
the size of non-fine grained  datasets such as MS Coco and 
ImageNet that are extremely large in terms of total number of 
images and classes. 

The overarching goal of our work is to model a high-
performing network that can effectively and readily form a 
concept and capture fine-grained details. Such a network 
should learn s moothly with minimal loss. We propose a deep 
neural network with modified auxiliary  modules that 
encourages more expressive local representation, ensuring 
effective gradients relay and increases the mult iplicity. Our 
network adds auxiliary modules to the GoogLeNet. Our 
proposed model ach ieves 2% h igher top-1 accuracy on 
ImageNet when compared with GoogLeNet. Since, ImageNet 
is considered one of the most challenging computer vision 
datasets currently available, a  2% improvement is considered 
as a very strong contribution. Next, we use our model as 
pretrained from ImageNet and apply it to CompCars dataset 
[14]. Our model achieves 2.54% top-1 accuracy gain compare 
with the GoogLeNet [4] and this surpasses all previously 
published results on this dataset. 

The rest of this paper is organized  as follows. In section 
II, we g ive a brief background work. We d iscuss the details of 
large-scale CompCars dataset in section III. In section IV, we 
present our proposed novel network. Sect ion V presents our 
experimental approach and discussion of the results. We 
conclude the paper and suggest future work in section VI. 

II. BACKGROUND WORK 

A. GoogLeNet 
GoogLeNet [4] was introduced along with the inception 

module in 2014. GoogLeNet is primarily used to improve the 
performance by reducing computation cost and authors in [4] 
claim to reduce 2/3 of parameters. It comprises 22 
parameterized layers. The authors in [17] exp lain the central 
idea of inception module, which is to reduce grid size while 
expanding the filter banks. It is accomplished by using 

factorization to replace 3x3 filter to fully  connected layers to 
reduce feature dimensionality and thereby leads to less 
parameter entanglement. 

The reason for the success of GoogLeNet inception model 
comes from the observation that the input features are 
correlated, and thus redundancy can be removed by combin ing 
them appropriately with a 1x1 convolutional filter branch. 
Additionally, the network uses various other filter size 
branches, concatenates the output features from all b ranches, 
and thereby provides a meaningful combination for the next  
layer [17]. 

B. Relay Backpropagation 
Relay backpropagation [2] addresses the issues related to 

regular backpropagation in deep networks. As network goes 
deep, parameter size and model complexity grows, that poses 
great challenge for optimization. We encounter vanishing and 
exploding gradients phenomenon as the gradients might be 
prone to either being very large or too s mall as error is 
propagated across many layers. Th is could lead to degradation 
in the network. Such degradation amplifies as network 
becomes deeper [2]. The key idea of relay backpropagation is 
to encourage the propagation of error information in a manner 
that it goes back up to a certain layer. Authors in [2] introduce 
one or more interim output modules (including loss layer) to 
selectively manage the back propagation of error in  
intermediate segments of the network, such segments 
comprise of fewer layers and are able to reduce the issue of 
degradation by minimizing the ensembles of losses. 

C. VGG Network 
The 16 o r 19 layers VGG [3] network has a uniform 

architecture and yields powerful perfo rmance. The entire 
network is composed of a series of s mall (3x3) convolutional 
layers with stride one. The advantage of the architecture it to 
increase the discriminative power o f the rectified linear 
activation by having more layers (two or three layers as 
opposed to one, as in  the case of 7x7 receptive field) fo llowed 
by three fully-connected layers. VGG net is a computational 
heavyweight but provides high classification accuracy. 

D. Residual Network 
Residual network (ResNet) [5] employs shortcut 

connections to skip some layers and performs identify  
mapping to achieve desired output. The basic building block 
of the ResNet architecture is designed to learn residual 
functions F(x), where the residual function is related to the 
functions F(x) = H(x), F(x) = H(x) - x, and F(x) = H(x) + x. 
One mot ivation for introducing these residual functions is that 
the authors believe that the ideal H(x) learned by any model is 
closer to the identity function x. Furthermore, instead of 
having a network learn H(x) from randomly  initialized 
weights, we save training t ime by learning F(x), the difference 
of H(x) and x [15] suggests that the ResNet is an exponential 
ensemble across several layers and introduces the third 
dimension of network size, which is multip licity, i.e., the 
number of ensembles. 



E. Transfer Learning 
Convolutional neural network features trained from large 

scale datasets such as the ImageNet o r MS Coco datasets can 
be used as generic image descriptors. Transfer learning refers 
to the process of using these generic features from a pretrained 
network such as GoogLeNet and ResNet [14] [27] as a 
baseline, to bootstrap the learning process on new datasets and 
further fine-tuning. Initializing with transferred features can 
improve generalization performance even for features from 
distant tasks and after further fine-tuning on a new task from 
the new dataset; it could be a useful technique for improving 
deep neural network performance. Therefore, we pretrain our 
proposed network on ImageNet and then fine tune it on 
CompCars [14] to improve performance. 

 

III. DESCRIPTION OF DATASET 
Comprehensive cars (CompCars) [14] dataset is a large-

scale car image dataset that contains 214,345 images and 1,687 
car models. Besides the larger scale, compared with other car 
datasets, CompCars comprises of images taken from various 
viewpoints, images from both car interior and exterior car 
parts. 

CompCars contains web and traffic surveillance scenarios 
and in this paper we focus on the web-nature data. The web-
nature car dataset contains 163 car makes and 1,716 car 
models. See fig. 1 for sample images. These images are 
organized hierarchically in three levels as make, model and 
year. There are 12 types of car categories: MPV, SUV, 
hatchback, sedan, min ibus, fastback, estate, pickup, sports, 
crossover, convertible, hardtop convertible. See fig. 2 for the 
hierarchical tree structure of a particular BMW instance. 

For the car make and model recognition task, [14] selects a 
subset of CompCars and it contains 431 car models (labeled as 
0 – 430 as shown in fig. 3 and 4). Each class contains on an 
average 100 pictures. The dataset is partitioned into train and 
verification sets. In [14] authors uses GoogLeNet on car make 
and model recognition task and achieve top-1 recognition 
accuracy of 91.2%. For the sake of comparison with earlier 
published results, we perform our experiments on the same 
subset of train and verification set as used in [14]. Fig. 3 and 4 
shows the train and test image counts across various car 
categories. 

 
Fig. 1. Sample images from CompCars dataset [14]. 

 
Fig. 2. Hierarchical tree structure of Make->Model->Year :: BMW->X5->2014 

for the CompCars dataset [14]. 

 
Fig. 3. Train image counts across 431 catagories of CompCars dataset [14]. 

 
Fig. 4. Test image counts across 431 catagories of CompCars dataset [14]. 



CompCars is the largest car image dataset we are aware of 
to this date. The challenge of this dataset is its large variation 
of the viewpoint of the same car under various illumination 
conditions and with little difference between various models of 
the same car make. 

IV. PROPOSED METHODOLOGY  
Mid-to-latter features contain distinctive and important 

informat ion and hence ways to efficiently represent and utilize 
them are worthy of exp loration. An auxiliary part o f a network 
is an additional branch (sometimes with classifier) that comes 
out from an intermediate layer. 

With auxiliary output modules, we provide an elegant 
way to effectively  preserve relevant informat ion by shortening 
the path from output layer to lower layers, and meanwhile 
restrain the effect of less relevant informat ion, which would  
have otherwise propagated through too many layers [2]. 

Inspired by GoogLeNet’s resource utilizat ion efficiency 
and VGG’s feature ext raction high  performance, we propose a 
hybrid convolutional neural network that takes advantage of 
both networks along with the idea of relay backpropagation 
and improves classification performance. The hybrid model 
not only provides early supervision and relay of gradients, but 
also works as ensemble network and offers expressive local 
representation. In order to further extract high level features, 

we embed the auxiliary module into mid-latter part of the 
network. 

A. Auxiliary Components 
GoogLeNet [4] is the first network to propose auxiliary  

classifier. Relay backpropagation [2] explo its the idea from 
the perspective of information flow and calls it auxiliary loss. 
The aforementioned two concepts both address solving the 
issue of vanishing gradients; however, each holds slightly 
different interpretation and implementation. Auxiliary module 
in a network is an additional branch with classifier that comes 
out from intermediate layers. GoogLeNet recognizes it more 
as a regularizer and thus only uses 1x1 filter to reduce size, 
followed by fully-connected layers, and loss layer. Relay 
backpropagation explo its the idea from the perspective of 
informat ion flow, and uses it to help propagate the supervision 
informat ion to shallower layers via intermediate shortcuts. 
Relay backpropagation uses VGG network and inserts 
auxiliary modules in the mid-latter region of the network. It  
uses max pooling layer, 3x3 convolutional layers and two 
fully connected layers. 

We believe the auxiliary component is not only a 
classifier but also capable of extracting more in-depth features, 
and thus it could be expanded into a mini network of its own. 
In this paper, we call our proposed component as auxiliary  
module. At mid-latter stage, rich and distinctive features are 
formed and thus this is considered as a mature stage to derive 

     

Fig. 5. On left  GoogLeNet with 9 inception modules. Mid-level segment 
consists of modules 3 – 6 (between pool layers 3 and 4). On the right is our 
proposed model, two enhanced auxiliary modules (AM1 and AM2) along 
with relay backpropagation maximize the usage of mid-latter features to 
ensure gradients propagate effectively and encourages expressive local 

representation. 

 

 

Fig. 6. Comparison of auxiliary modules. On left  GoogLeNet’s auxiliary 
components and on the right proposed enhanced auxiliary modules (AM1 and 

AM2) 



features. Hence, we insert the auxiliary modules at the mid-
level. It summarizes the current sophisticated features and 
provides a proactive yet mature feedback. In our proposed 
auxiliary module, we use average pooling, 1x1 filter to reduce 
dimensionality, fo llowed by 3x3 filter to further ext ract 
detailed features, then two fully connected layers, ReLu and 
drop out is added to regularize the module. 

However, we need to carefully choose exactly where to 
add the auxiliary components. Through experiments, we find 
premature auxiliary  classifier, i.e., adding it too soon in the 
network slows down the performance because low level 
features are generic and leads to false classification. 
Therefore, we stick to the same locations of the auxiliary  
components as in original GoogLeNet. 

Middle level features are considered distinctive and thus it 
is important to effectively utilize this rich informat ion. We 
compare GoogLeNet architecture with our model that utilizes 
enhanced auxiliary components. While the stem and the final 
classifier remained unchanged, we focus on the middle 
sections, which comprises of 9 inception modules as segment 
1 – 9 as shown in fig. 5. Reg ion between pool 3 and pool 4 is 
at the middle level and comprises of segments 3-6. 

B. Proposed Novel Deep CNN Architecture with Auxiliary 
Components 
GoogeLeNet adopts the auxiliary classifier structure, as 

showed in figure 6 left and comprises of: one average pooling 
layer, one 1x1 conv layer and followed by two fully connected 
(FC) layers and finally loss layer. After having explored 
several different implementations we conclude having 
different structures for each of the two auxiliary modules 
(AM1 and AM2) yields better results. Fig. 6 right shows, in 
the early stages of the network we implement a shallower 
module (AM1 in fig. 6 right) by incorporating additional 3x3 
convolutional layer. A 1x1 convolution was first introduced in 
Network in Network [19], where the author’s goal was to 
generate a deeper network without simply stacking more 
layers. It replaces few filters with a smaller perceptron layer 
with mixture of 1x1 and 3x3 convolutions. 

For extract ing features in the latter stage of the network 
where abstract distinctive features reside we propose deeper 
AM2 as seen in fig. 6 right. We add four 3x3 convolutional 
layers. 

C. Benefits of Proposed Architecture 
1. Ensures gradients propagate effectively: Increasing 

the depth of network introduces the vanishing and 
exploding gradients and thus simply stacking layers 
results in poor performance. Although this issue has 
been partially addressed with by techniques such as 
rectifier neuron, refined init ialization scheme and 
batch normalization, it remains a challenge in  
training [2]. The auxilary  classifer provides early  
additional supervision for the network and provides 

an effective error propagation mechanis m. 
GoogLeNet and relay backpropagation use auxiliary  
classifier to allievate vanishing gradients. 
 

2. Encourages expressive local representation by 
leveraging mature mid features: Mid-to-latter 
features contain distinctive information and hence 
efficiently representing and utilizing them is 
important. Feature extraction gets more intricate as 
we go through layers and hence 3x3 filter layer is 
used to further extract features before classification. 
Inspired from VGG’s high performing architecture, 
we use a series of 3x3 convolutional layers and 
followed by three fully connected layers.  
 

3. Efficiently increase the size of network through 
ensemble: The state-of-the-art neural networks such 
as ResNet [5], GoogLeNet [4] are essentially large 
number of convolutional network ensembles [15]. In  
In [15] authors propose the third dimension of neural 
network size: multiplicity, which is the number of 
ensembles. Auxiliary modules add to the dimensions 
of ensembles. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Setup and Implementation 
We ran the experiments on the individual model using 

Caffe [20], which is an open source deep learning software 
framework developed by the Berkley Vision and Learning 
Center. Caffe plugs in  into the NVIDIA DIGITS p latform 
[21], which is a Deep Learn ing GPU Training System. 
NVIDIA DIGITS [21] is an open source project that enables 
the users to design and test their neural networks for image 
category classification and object detection with real-t ime 
visualizat ion. The specifications of the system used to perform 
all the experiments are as follows: Four NVIDIA GeForce 
GTX TITAN X GPU each with 12GB of VRAM, and two 
Intel Xeon processors E5-2690 v3 2.60GHz with a total of 
48/24 logical/physical cores and 256 GB of main memory 

We first train our model on ImageNet and then use 
pertained model on  CompCars dataset. The two  auxiliary  
classifier modules’ losses are added up to the total loss at the 
training stage, auxiliary classifiers are not used during test 
stage. 
 

B. Experimental Results 

The first phase is to train the neural network model on 
ImageNet. We compare the GoogLeNet  model with our 
proposed model. The result is shown in Table I. Our model 
improves upon GoogLeNet by 2.07% top-1 and 1.37% top-5 
accuracy, which is considered significant considering the 
hugely challenging nature of ImageNet dataset. Our best 

http://arxiv.org/pdf/1312.4400v3.pdf


results were achieved using stochastic gradient descent with 
decay of 0.0001, base learning rate of 0.01 and momentum of 
0.9. The results of GoogLeNet model and our proposed model 
trained on ImageNet are shown in fig. 7 and fig. 8, at 50 or 
more epochs of training our proposed model continues to 
outperform GoogLeNet. 

The second phase is transfer learning with pretrained 
models. We continue train ing the pretrained models on 
CompCars. This allows the network performance to mature 
further as it picks up the car-specific features. Our best results 
are achieved using stochastic gradient descent with decay of 
0.0001, base learning rate of 0.01 and momentum of 0.9.  

In order to compare the performance of start-of-the art 
neural networks with our proposed architecture, we choose to 
benchmark on pretrained GoogLeNet and ResNet. For 
GoogLeNet  we train  with learning rate as 0.001 and batch size 
as 32. For ResNet, we t rain with learn ing rate as 0.001 and 
batch size as 10. The results are shown in  Table II. Authors in 
[14] used GoogLeNet for car classification task and reported 
91.2%. In order to verify authors’ results we ran experiments 
on GoogLeNet  (see Table II column 1) and obtained 91.32% 
accuracy. Our proposed novel hybrid method proves to be 
about 2.5% higher than GoogLeNet  and 2.7% h igher than 
ResNet on the top-1 accuracy. We consider this to be a 
significant contribution considering the hugely challenging 
nature of the dataset. The results of GoogLeNet  and our 
proposed model trained on ImageNet are shown in fig. 9 and 
10, at 30 or more epochs of training our proposed model 
continues to outperform GoogLeNet. 

TABLE I 
COMPARISON OF THE TOP 1 & 5 CLASSIFICATION ACCURACY (%) OF 
PROPOSED M ETHOD WITH GOOGLENET ON THE IMAGENET DATASET 

AT 50 EPOCHS OF TRAINING 
 

 GoogLeNet Proposed 
Method 

Top-1 65.83 67.90 

Top-5 86.83 88.19 

 

TABLE II 
COMPARISON OF THE TOP 1 & 5 CLASSIFICATION ACCURACY (%) OF 

PROPOSED M ETHOD WITH OTHER M ETHODS ON THE COMPCARS 
DATASET AT 30 EPOCHS OF TRAINING 

 

 GoogLeNet GoogLeNet[14] ResNet Proposed 
Method 

Top-1 91.32 91.2 91.19 93.84 

Top-5 98.47 98.1 - 98.93 
Note: Data not available is marked as ‘-‘. Pretrained ResNet model did not 
implement Top-5 accuracy. 

 

 
Fig. 7. Training and validation loss. Top 1 and 5 validation accuracy on 

ImageNet dataset using GoogLeNet. 

 

 

 
Fig. 8. Training and validation loss. Top 1 and 5 validation accuracy on 

ImageNet dataset using proposed method. 

 

 

 
Fig. 9. Training and validation loss. Top 1 and 5 validation accuracy on 

CompCars dataset using GoogLeNet. 

 



VI. CONCLUSION AND FUTURE WORK 
We proposed new deep CNN arch itecture that combines 

the merits of GoogLeNet’s time and space efficiency, VGG’s 
intensive convolution ability and high classificat ion accuracy, 
and successful relay backpropagation concept to tackle 
network degradation. Our hybrid network achieved better 
performance than other published results. Our method 
suggests several novelties and advantages over existing 
methods: First, it uses the GoogLeNet’s key arch itecture - 
inception modules to efficiently explo it the inception’s 
dimension reduction power and to lower the network cost. 
Second, inspired by the VGG’s uniform and powerful 
architecture, the method replaced GoogLeNet’s auxiliary  
classifiers into deeper networks with 3x3 convolution 
components to increase its recognition capability. Th ird the 
network is a powerful and efficient network in the way that it 
represents the ensembles of mult iple short and medium depth 
networks. Further exp loration could still be done in the 
direction of firstly adding depth to the auxiliary modules and 
secondly fusing features from multiple networks. 
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Fig. 10. Training and validation loss. Top 1 and 5 validation accuracy on 

CompCars dataset using proposed method. 
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