
Int. J. of Computational Vision and Robotics, Vol. x, No. x, 1–11 1

Intelligent Plankton Image Classification with Deep
Learning

Hussein Al-Barazanchi
Department of Computer Science, California State University
Fullerton, CA 92831, USA
hussein_albarazanchi@csu.fullerton.edu

Abhishek Verma

Department of Computer Science, New Jersey City University
Jersey City, NJ 07305, USA
averma@njcu.edu

Shawn X. Wang

Department of Computer Science, California State University
Fullerton, CA 92831, USA
xwang@fullerton.edu

Abstract: Plankton are extremely diverse groups of organisms that exist in large
water columns. They are sources of food for fishes and many other marine life
animals. The plankton distribution is essential for the survival of many ocean lives
and plays a critical role in marine ecosystem. In recent years, intelligent image
classification systems were developed to study plankton distribution through
classification of the plankton images taken by underwater imaging devices. Due
to the significant differences in both shapes and sizes of the plankton population,
accurate classification poses a daunting challenge. The mixed quality of the
collected images adds more difficulty to the task. In this paper, we present an
intelligent machine learning system built on convolutional neural networks (CNN)
for plankton image classification. Unlike most of the existing image classification
algorithms, CNN based systems do not depend on features engineering and they
can be efficiently extended to encompass new classes. The experimental results on
SIPPER image datasets show that the proposed system achieves higher accuracy
compared with the state-of-the-art approaches. The new system is also capable
of learning a much larger number of plankton classes.
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1 Introduction

Plankton exist in large water bodies and form the main source of food for fishes and other
marine animals. They are very different in both sizes and shapes due to their huge population
and diversity. There are two types of plankton, phytoplankton and zooplankton. While the
phytoplankton is the plant type of plankton, the zooplankton is the animal type. In addition
to being a source of food, Phytoplankton is also a key player in carbon fixation cycle
where they contribute to about half of our planets’ fixed carbon. The distribution of the
two types of plankton is highly sensitive to the changes in their environment. For instance,
their population and distribution can change quickly as a result of changes of the pollution
level in their surrounding environment. Therefore, marine scientists study the alterations
of plankton population as an early indicator for environmental issues. The investigation of
plankton population in terms of their types and numbers can advance our understanding of
the marine ecosystem. It may also shed light on other environmental issues.

In the early days, research on plankton distribution relied on collection of plankton
samples. The available techniques for plankton sample collection were limited to such tools
as towed nets, pumps, or Niskin bottles, etc. An expert is then assigned to analyze and
classify the collected samples. These approaches required significant amount of resources
and manpower. The invention and advances of underwater imaging systems lead to a
variety of alternative ways to study plankton population and distribution. The underwater
imaging systems were utilized to capture plankton images. These images were then stored
in computers and they were analyzed to study the population and distribution of plankton.
Several different underwater imaging systems have been built to collect images of plankton
samples. The three most popular systems are Video Plankton Recorder (VPR) Davis et al.
(1992), under water holographic camera system (HOLOMAR) Watson et al. (1998), and
Shadowed Image Particle Profiling and Evaluation Recorder (SIPPER) Samson et al. (2001).
These systems make it possible to collect immense number of images of plankton samples
continuously. Even with the advances in sample image collection, the process of sample
classification remained manual for several years. Most recently, the fast development in
computer vision algorithms and powerful GPUs make it possible to build intelligent image
classification systems and automate the process of plankton image classification.

One of the early attempts to automate the classification of plankton images can be
traced back to Tang et al. Tang et al. (1996). In their experiments, they used samples that
were collected by VPR imaging system. Their approach utilized Fourier descriptors with
invariant moment features and gray-scale morphological granulomtries. In 2005, Luo et
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al. introduced an approach that achieved an accuracy of 90% on five classes of plankton
images captured by SIPPER system Luo et al. (2004). The system they developed took
advantage of active learning with support vector machines. In the following year, Tang et al.
invented a new algorithm for binary plankton classification based on normalized multilevel
dominant eigenvector estimation Tang et al. (2006). The algorithm used shape descriptors
and accomplished 91% accuracy. Zhao et al. Zhao et al. (2009), in 2009, suggested a system
that used random sampling with multiple classifiers. The classification accuracy with this
technique was boosted to 93% with seven classes of plankton. In 2014, a new framework
called PNDA was developed by Li et al. Zhifeng et al. (2014). Their approach reached an
accuracy of 95% also with seven classes.

A drawback with all the aforementioned algorithms is that they depended on features
engineering. The accuracy relies on the quality of the used features. This is problematic for
two reasons. First of all, looking for good features is time consuming. These features are
very much dependent on the existing dataset. They are chosen to be optimal representation
of the data. Secondly, when new data and classes are added a different set of features must
be decided to integrate the new classes into the system.

Most recently, Lee et al. proposed an approach using convolutional neural network
Lee et al. (2016). Their approach worked on a large number of samples. It was learned
that the imbalance of the numbers of samples among different classes caused decline in
classification accuracy. In order to deal with this obstacle their algorithm employed some
specific tactics that are not easy to be generalized. Their experiments achieved an accuracy
of 94.7% for five classes of plankton. All these works only classified five to seven classes
of plankton.

In this paper, we propose an intelligent classification system that is built based on
convolutional neural networks as the building block. Our experimental results using the
SIPPER datasets demonstrate improvement in classification accuracy compared with the
state of the art approaches.With the same seven types of plankton our design improved the
classification accuracy to 98.2%. In addition, the proposed system was extended to a lot
more classes of plankton. To test the robustness of our design, we also conducted two phases
of experiments with different level of imbalance among the datasets. The experimental
results indicated that our design is not very sensitive to such imbalance.

The rest of this paper is organized as follows. In section II, we provide a description of
the SIPPER image datasets used in our experiments. In section III, we discuss the details of
the proposed system. We present the experimental setup and results in section IV. Section
V concludes the paper and suggests some future improvements.

2 Plankton Image Datasets

The plankton images that we used in this study are provided by the University of South
Florida (Tampa, FL, USA) Kramer (2010). Those images are obtained using version 3 of
SIPPER system which capture 3-bit image resolution so the images are of low quality. All
the samples were gathered during the time period between 2010 and 2014 from the Gulf of
Mexico. A quick analysis of the entire dataset revealed two main issues. The first issue is that
due to the low resolution used by the SIPPER system the quality of the images is low and at
the same time the noise level is high. The second issue is the high level of variations within
the same plankton class accompanied with similar appearance between different plankton
classes. Additional challenges include deformation and occlusion of plankton objects. The
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entire dataset consists of more than 750 thousands samples. These samples are identified
into 81 different classes by the marine scientists at USF. To compare our approach with the
state of the art approaches from most recent studies Lee et al. (2016); Luo et al. (2004); Tang
et al. (2006); Zhao et al. (2009); Zhifeng et al. (2014), we first selected only seven types of
plankton for Phase one of our experiments. Those seven classes were the same classes used
in previous research with same distribution per plankton class. The details of these classes
with their population are provided in Table I. Figure 1 shows randomly selected samples
from this set.

Table 1 Plankton Types and Their Distribution

. #Sample Average Width Average Height
Acantharia 131 70 46
Calanoid 172 346 319

Chaetognath 450 160 273
Doliolid 485 68 45

Larvacean 529 61 43
Radiolaria 563 110 69

Trichodesmium 789 107 97

Since there are many classes of plankton in the entire dataset and the numbers of samples
in each class are very different, in the next two phases of experiments we selected classes with
different sample sizes to study the performance of our approach in terms of classification
accuracy. In phase two, we selected the classes that have more than one thousand samples
per class and we limited the max number of images per class to be two thousands. The
reason is to prevent the network from overfitting on classes with more images and not
learning enough on the classes with smaller numbers of images. The result of this selection
is a dataset with 52 classes. In phase three, we selected the classes with a minimum number
of 10 images per class and the max number of images is set to two thousand images. This
selection resulted in a dataset of 77 classes. Experiments on these two datasets will provide
more accurate assessment of the feasibility of such system to a real world application. They
will also reveal how imbalance among the class data sizes affect the classification accuracy.

3 Convolutional Neural Networks

A typical algorithm based on computer vision starts with extracting distinguishable features
in the dataset. Ideally, those features are best representation of the characteristics of the
data. In the meantime, they are invariant within the same type of data. Most of the existing
approaches for feature extraction rely on engineering hand designed features for the targeting
objects. This process is difficult, time consuming, and laborious. Since the selected features
very much depend on the data, it is difficult to scale them up for new classes. In other words,
a different set of features need to be selected when new classes are added to the dataset. The
other line of methods is to let the algorithm learn the features automatically. These methods
are more efficient. For image classification, CNN is proved to be the most effective and
promising method within this catagory of learning methods.

CNN was discovered in the work of Hubel et al. Hubel and Wiesel (1968) on catsâŁ™
visual cortex. Fukushima was the first to build a simulation of this mechanism in his
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Figure 1 Random Samples from the Seven Classes

Figure 2 The CNN Architecture
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system Neocognitron Fukushima (1980). LeCun et al. LeCun et al. (1998) developed a
CNN architecture and used it for a handwritten recognition system. The popularity of CNN
remained limited due to its high computational complexity until the introduction of GPUs.
The advances in GPUs and the successful application of CNN in Imagenet competition
Krizhevsky et al. (2012) boosted its popularity.

Convolutional neural networks based system consists of two main parts. The typical
design of the CNN is shown in Figure 2. The first part is the convolutional layers. These layers
work as distinguishable feature extractor. Typically, a convolutional layer is further divided
into three components, namely filter layer, non-linearity, and sub-sampling Krizhevsky et al.
(2012); LeCun et al. (1998, 2010). The filter layer is a specific form of fully connected neural
network Boureau et al. (2010); Van (2014). Neurons in the filter layer are sparsely connected
to neurons in the next layer and they follow a topographical layout. Those connections are
based on the related areas in the visual context. Images are fed to the filter layer in the format
described in the equation (1). The symbols h, w and c refer to the height, width and number
of channels respectively. Equation (2) shows how the filter layer compute the output LeCun
et al. (2010).

h× w × c (1)

yj = bj +
∑
i

Kij × xi (2)

The non-linearity layer consists of activation function. The common activation functions
are the tanh() and sigmoid() functions Krizhevsky et al. (2012); LeCun et al. (2010). A
problem with these activation functions is their slow convergence rate when used with
gradient descent. Non-Saturating activation are faster Krizhevsky et al. (2012); LeCun et al.
(2010). Equations (3) and (4) show the sigmoid and tanh functions. For faster convergence
we used Rectified Linear Units (ReLUs) which is shown in equation (5).

sigmoid(x) =
1

(1 + e−x)
(3)

tanh(x) =
(e2x − 1)

e2x + 1)
(4)

f(x) = max(0, x) (5)

The sub-sampling layer is composed of pooling. Pooling is a technique for
dimensionality reduction Boureau et al. (2010) by removing unrelated information
Simonyan et al. (2014). The output of this layer is the reduced version of the input Van
(2014). A problem that arises from filter layer’s features is that they are not translation
invariant. The pooling is used to help the system to be immune to translation in the input.
Pooling helps to reduce the sensitivity of activations in neural network induced by the
pixels’ locations and the neural network structure Srivastava et al. (2014). The common
functions used in pooling are maximum and average functions and they are usually named
max-pooling and average-pooling. There are two different ways to feed the input to those
functions, namely the separate or overlapping mode Van (2014). The purpose of using
multiple layers of convolution is to enable the system to learn the feature hierarchies. In the
first layer, the system learns the low level features which are pixel intensities. The middle
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layer learns the objects’ edges which are mid-level features. The system learns the high
level features for example the objects themselves in the final layer of convolution.

The second major part of CNN based systems is the classifier. Fully connected neural
networks (hidden layers) are used in this part as shown in equation (6). To regularize the
hidden layers, a dropout layer is added after each hidden layer. Dropout is a recent technique
developed by Srivastava et al. Nair et al. (2010). The purpose of the dropout layer is to
reduce the problem of overfitting and enhance generalization on the test data. This method
works by removing random neurons with their connections during the process of learning.

The last layer in the system is the output layer. The output layer assigns the sample to
a specific class according to the outputs of the previous layers and some computation. To
compute the classification outputs in the system, the softmax function is used as shown in
equation (7). The two components convolutional layers and fully connected layers works
jointly to form the leanring system. The number of convolutional layers and dropout layers
used in the system depends on the designer of the system, but more layers mean more
computations and likely higher accuracy.

Y (x) = f((
∑
i

Wi × xi) + b) (6)

Pj =
exp(xj)

(
∑

k exp(xk))
(7)

We used backpropagation algorithm for learning and stochastic gradient descent for
optimization. We set the batch size to 128 images for training and 64 images for validation
and testing. Initially the momentum and learning rate are set to 0.9 and 0.01 respectively.
We set the number of epochs to 150 epoch. Learning rate is updated each 25% of epochs
to be half of the old value.

Table 2 Division of Data Sets

Dataset Training Validation Testing
Sipper-7 2182 466 471

Sipper-52 70352 15074 15077
Sipper-77 74680 16009 16002

4 Experimental Setup and Results

To compare the performance of our design with the previous research and also evaluate how
the imbalance of class sizes affect the accuracy, we conducted three phases of experiments
using different sets of data selected from the dataset obtained using SIPPER system from
the University of South Florida. In the first phase, we took only seven classes for the purpose
of comparing the results with previous studies and we called this set sipper-7. The second
phase composed of classes with more than 1,000 samples per class and up to 2,000 samples
which resulted in 52 classes and we named it sipper-52. In other words, the second phase
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selected classes with samples between 1,000 and 2,000. The last phase is composite of
classes with more than 10 images per class which resulted in 77 classes and we called it
sipper-77. In each phase, we divided the dataset to 70% training, 15% validation, and 15%
testing. Table II shows the details of this division.

The input to the convolutional neural networks should be of fixed dimension. However,
the dimensions of images in the sipper dataset are very different. As can be seen from Table I
for sipper-7, the average height of all images in sipper-7 is 138 and the average width is 142
pixels. Actually, in sipper-7, the minimum height is 43 pixels while the maximum height
is 319 pixels. Meanwhile, the minimum width is 61 pixels and the maximum width is 346
pixels, respectively. Similarly, in sipper-52 and sipper-77 the dimensions of the images are
very different. To ensure a fixed dimension of input to CNN, we have to resize the images
in the dataset. There are two ways of resizing images. The first way is to resize the images
in regard to aspect ratio while the second technique is without regard to the aspect ratio.
We chose to do the resizing without regard to the aspect ratio. The dimensions were set to
256*256 for height and width.

Table 3 CNN Architecture

Layer Size Stride
Input Image 256 * 256

Cropping 222 * 222
Convolution 1 64 Kernel (3 * 3) 1

Pool 1 3 * 3 2
Convolution 2 64 Kernel (3 * 3) 1

Pool 2 3 * 3 2
Convolution 3 128 Kernel (3 * 3) 1

Pool 3 3 * 3 2
Convolution 4 128 Kernel (3 * 3) 1

Pool 4 3 * 3 2
Convolution 5 256 Kernel (3 * 3) 1

Pool 5 3 * 3 2
Hidden Layer 1 256

Dropout 20%
Hidden Layer 2 256

Dropout 20%
Output Layer 7, 52, or 77

We utilized the common configuration of convolutional neural networks that is filter
layer trailed by non-linearity followed by max pooling layer. This CNN architecture follows
the general design guides of VGG Net Simonyan et al. (2014). Table III shows the details
of the architecture. In front of the CNN is the input layer which receives images as an input.
The input layer is followed by 5 convolutional layers. All reception fields for convolutional
layers through the network are of size 3*3. We set the number of the fully connected layers
to two hidden layers. The number of neurons in each hidden layer is set to 256 neurons.
To alleviate the problem of overfitting, a dropout layer Srivastava et al. (2014) is attached
to each fully connected layer with 20% dropout ratio. ReLU activation function Nair et al.
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(2010) is used for all the neurons in the convolutional and dense layers. The input to the
output layer is the output from the second hidden layer. Output layer size was set to 7, 52,
or 77 depending on which sipper dataset were used. The details of initializing the weights
and biases of the network are shown in Table IV.

Table 4 CNN Architecture

Layer Weight Bias
Initialization STD Initialization STD

Convolution 1 - 5 xavier 0.1 constant 0.2
Hidden Layer 1 - 2 gaussian 0.01 constant 1

Output Layer gaussian 0.01 constant 1

We used the architecture in Table III and Table IV for all 3 sipper datasets. It gave very
good results for sipper-7 while the results for sipper-52 and sipper-77 were not as good
as sipper-7. The reason is for the low quality of the images and also similarity between
different classes and variations within the same class. In all experiments, we did not use data
augmentation. Table V shows the results of the experiments. As can be seen in the table, the
accuracy for sipper-52 is slightly better than that for sipper-77. This is expected because of
the imbalance in the numbers of images for the classes. Nevertheless, it is worth noticing
that the difference in accuracy is not significant, indicating certain level of robustness of
our design.

Table 5 Experimental Results

Dataset Epoch Validation Testing
Sipper-7 136 98.43 % 98.20 %

Sipper-52 150 81.95 % 81.79 %
Sipper-77 148 80.72 % 80.54 %

5 Conclusion and Future Work

Efficient analysis and classification of huge amounts of plankton data requires robust
algorithms. In this paper, we presented a learning system based on convolutional neural
networks. We conducted comprehensive experiments and in depth comparison of the
performance analysis of CNN across 3 plankton image datasets. Results of our experiments
using the SIPPER dataset show improvement in classification accuracy in comparison to
the previous approaches from other research groups. One major advantage of the CNN is
scalability for classification of new classes without the need for features engineering. In
the future we plan to extend our work by including Hybrid Convolutional Neural Networks
and compare accuracy with CNN we used in this paper. Another area of potential research
is the multi-column CNN feature fusion methodology. Additionally, we plan to perform
comparative assessment on multiple large scale color image datasets.
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