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Abstract— Still image-based action recognition is a process of 

labeling actions captured in still images.  We propose a fusion 

method that concatenates two and three deep convolutional neural 

networks (CNN). After examining the classification accuracy of each 

deep CNN candidates, we inserted a 100 dimensional fully-connected 

layer and extracted features from the new 100 dimensional and the 

last fully-connected layers to create a pool of candidate layers. We 

form our fusion models by concatenating two or three layers from 

this pool—one from each model—and trained and tested them on the 

large-scale Stanford 40 Actions still image dataset. We forwarded the 

concatenated features to Random Forest and SVM for classification.  

Our experiments show that our fusion of two deep CNN models 

achieved better accuracy than the individual models, with the best 

performing fusion duo of 80.351% accuracy. The fusion of three 

models increases the accuracy even further, performing better than 

both the individual and the fusion of two models, with 81.146% 

accuracy. Moreover, we also investigate the classification difficulty 

level of the Stanford 40 Actions category. 
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I.  INTRODUCTION 

Over the past years, machine learning in computer vision 
has gained significant advances in solving multitudes of image 
classification problems. These successes have led to 
applications in various domains: remote sensing [1], traffic and 
vehicle surveillance  [2], biomedical image classification [3], 
food product quality inspection [4], and robot navigation [5]. 
Action recognition is one area that profits from image 
classification advances as many have used image classification 
methods to solve action recognition problems [6].  

Action recognition can be loosely defined as labeling a 
video or still image with “verbs” that portray the 
corresponding action contained in that video or image. 
Broader applications of action recognition include security 
surveillance [7], elder and child-care monitoring [8], and 
human-computer interaction.  

Action recognition methods are developed based on its 
action representation medium. Video-based action recognition 
uses image sequences as input, while still image action 
recognition uses still images as input. In recent years still 
image-based action recognition has gained popularity [9]. 

A few still image-based action recognition methods 
focusing on image representations are Visual Concepts and 

Object Bank. These methods seek to optimize features 
acquisition upon which the classifiers would be trained. Visual 
Concepts focuses on mid-level representations and makes use 
of text queries on popular search engines to harvest visual 
attributes of the images throughout the internet [10]. Learning 
is done from these collected visual concepts. Object Bank is a 
high-level image representation formed from the response 
maps of multiple object detectors [11]. Some methods take the 
following cues to improve action recognition performance: 
human-object interaction [12], human pose [13], and body 
parts  [14]. 

Focus on advancing still image-based action recognition 
benefits other research topics related to it. A more accurate 
still image-based action recognition could be used to reduce 
number of frames in video-based action recognition. Also, 
accurate action recognition would give more reliable cues in 
pose estimation, image retrieval, scene recognition, and object 
detection. Similarly, we expect that advances in these topics 
also benefit still image-based action recognition.  

The annual ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) [27] has proven to be a popular arena 
where image classification and object detection researchers 
present and compare their algorithms. Since the revolutionary 
AlexNet [15], many teams that performed well on the 
ILSVRC used a type of deep CNN: VGGNet [16], GoogLeNet 
[17], and ResNet [18].  

Our goal is to improve action recognition accuracy on still 

images. Considering the increased performance of deep CNN 

in solving visual recognition problems that are related to 

action recognition, we expected that VGGNet, GoogLeNet, 

and ResNet would also perform well on action recognition.  

In this paper, we propose and evaluate the following:  

(1) Fusion of two deep CNNs achieves higher action 

recognition accuracy than individual models 

(2) Fusion of three deep CNNs achieves an even higher 

accuracy than the two-CNN fusion 
Additionally, we also used our best performing fusion 

model to investigate the dataset’s difficulty level for action 
classification.  

The rest of the paper is organized as follows: section II 
gives a brief overview on the deep CNN that we fused, section 
III describes the dataset, section IV elaborates on the 
methodology, section V describes the experimental results. 
Section VI discusses conclusion and future work. 

*these authors have contributed equally to this work                                                                                  



II. OVERVIEW OF RECENT DEEP LEARNING MODELS 

Our method uses deep CNNs as the base of our fusion 
model. The deep CNN models we fused are GoogLeNet, 
VGG-19, and ResNet-50. The following describes the 
architecture of each model.  

GoogLeNet. Inception-v1 [17] or as it is commonly called 
“GoogLeNet,” is a deep yet lightweight network as its primary 
idea is performance improvement and computational 
efficiency. GoogLeNet’s relatively low computational cost is a 
product of two ideas: 1) optimal convolutional neural network 
through the use of sparsity [19]; and 2) dimensionality 
reduction through 1x1 convolutional layer as proposed by Lin 
et al. in their model Network-in-Network (NIN) [20]. 

The Inception-v1 modules in GoogLeNet use 1x1, 3x3, 
and 5x5 filters and also a max-pooling layer, all arranged in 
parallel fashion. To reduce dimensionality, the 3x3 and 5x5 
filters are preceded by a 1x1 convolutional layer, while the 
max-pooling layer is succeeded by a 1x1 convolutional layer. 
The overall GoogLeNet architecture is wide (due to its 
parallel-fashioned Inception-v1 modules) and deep (22 layers) 
yet computationally efficient, mainly due to its first few layers 
being traditional convolutional layers and the rigorous 
dimensionality reduction using the 1x1 convolutional layers.  

VGGNet. This deep network of 16 or 19 layers employs 
small (3x3) convolutional layers with stride 1 in the whole 
network [16]. The purpose is twofold: 1) to increase the 
discriminative power of the rectified linear activation by 
having more layers (two or three layers as opposed to one, as 
in the case of 7x7 receptive field), and 2) to decrease the 
number of parameters. Followed by three fully-connected 
layers, VGGNet is a computational heavyweight but highly 
performing network. 

ResNet. One of the deepest neural networks, if not the 
deepest with its current incarnation of 1,001 layers [21], 
residual network [18] employs shortcut paths that perform 
identity mapping in order to achieve the desired output. For 
each residual unit, an input is branched: one goes into the 
function and is transformed (the “residual”) while another 
bypasses the function (the “identity”). By merely adding the 
“residual” to the “identity,” optimization becomes easier since 

that means we don’t have to generate the entire desired output 
through conventional method. 

The residual network implementation employs batch 
normalization (BN) to reduce internal covariate shift [22]. For 
deep neural network such as residual network, a change in 
activations and input distribution in early epochs could cause 
great changes in the later epochs, which will affect accuracy. 
As deep neural network utilizes stochastic gradient descent, 
BN solves the problem by normalizing each mini-batch. 

III. DESCRIPTION OF STANFORD 40 ACTION DATASET 

Compared to video, still images cost less memory 
footprint. The efficacy of still image in capturing the desired 
action, however, depends on the actions. Some are more 
suitable to be represented as still image, while others as video. 
Actions such as sleeping, reading, or running could still be 
accurately perceived when represented in a still image. On the 
other hand, performing certain dance moves, making certain 
hand gestures, or doing other sequential motions would lose 
their meaning when being represented in a still image. These 
actions require image sequences to be perceived correctly and 
thus video would be a better representation medium. 

We evaluated our model on the Stanford 40 Actions 
dataset [23]. Overall, the dataset contains 9,532 still images 
and has 40 action classes depicting daily activities such as 
“cooking”, “using a computer”, “writing on a book”, and so 
on. The images are in various visibility, occlusion, angles, 
poses, and background clutter. Fig. 1 depicts example images 
of the Stanford 40 Actions.  

Stanford 40 Actions is not the only still image action 
recognition dataset with various visibility, angles, and 
background clutter. Ikizler [24] and PASCAL [25] datasets 
also have those difficult images. However, these two datasets 
have much lower number of classes, with Ikizler having only 
5 action classes and PASCAL having 9. Considering the 
various visibility, angles, background clutter, and also the 
number of action classes, Stanford 40 Actions is easily one of 
the most challenging still image-based action recognition 
datasets.  

Originally, the dataset is divided into 4,000 training images 
and 5,532 test images. For our experiments, however, we 
created a validation dataset from the train dataset. Thus, from 

 
 

Fig. 1. Example images of Stanford 40 Actions dataset. 



the original 4,000 training images, we took 3,200 images to 
make up our training dataset with 80 images per action class, 
while the remaining 800 images make up the validation dataset 
with 20 images per action class. We used the test dataset of 
5,532 images. 

IV. PROPOSED DEEP CNN FUSION METHODOLOGY 

We developed our fusion methodology as we experimented 
on the individual deep CNN models. In this preliminary step, 
we benchmarked GoogLeNet, ResNet-50, VGG-16, and VGG-
19 on the Stanford 40 Actions to gauge each model’s action 
recognition accuracy. We only needed one VGGNet in our 
fusion model thus after benchmarking the models we chose 
VGG-19 over VGG-16 due to the former’s slightly better 
performance on our dataset.  

For image preprocessing, since the raw images come in 
various sizes, we uniformed them by squashing the images into 
256x256, which we later cropped to 224x224. Although the 
dataset is considered the biggest still image action recognition 
dataset, we deemed the dataset to be too small to pre-train the 
models. Thus, we used the models’ ImageNet pre-trained 
weights to fine-tune and test them on the Stanford 40 Actions. 

We inserted a 100-dimensional (d) fully-connected (fc) 
layer before the last 40-d fc layer on the GoogLeNet and VGG-
19. The rationale is to take advantage of a higher dimensional 
feature vectors that supposedly lead to a better performance. 
Another layer that we used is the prob layer, which is the 
softmax layer in the deep CNN. The output of this prob layer is 
a probability vector for which we were interested in extracting 
to be fused with other models’ feature vectors. Extracted 
features from the 100-d and 40-d fc layers were forwarded to 
Random Forest and linear SVM. This classification step is 
necessary to determine the best performing layer on each 
model. These layers are ones that we prioritized to fuse and 
fine-tune. 

Since we experimented with GoogLeNet and VGG-19 first, 
we found that the prob layers consistently generated better 
results than the 100-d and 40-d fc layers. Moreover, we figured 
that running unmodified ResNet-50 was already 
computationally taxing. Thus, we did not insert a 100-d fc 
layer on our ResNet-50 model. We found that the unmodified 
individual ResNet-50 model still achieved the highest accuracy 
on our dataset. Now that we had the necessary information, we 
solidified our fusion methodology as shown in Fig. 2. 

As in the preliminary experiments, our fusion process 
started with image preprocessing. Next, we forwarded these 
preprocessed images into separate deep CNN models. We 
extracted features from the 100-d, 40-d, and prob layer of 
VGG-19 and GoogLeNet, and the 40-d and prob layer of 
ResNet-50. Our fusion models are the possible combinations of 
these vectors. We concatenated these possible combinations 
and classified them using Random Forest and linear SVM.  

 
Fig. 3. t-SNE [26] visualization of the Stanford 40 Actions validation set. 

Clustering results are generated by extracting 40-dimensional features from 

fully connected layer of ResNet-50. 

 
 

Fig. 2. Fusion methodology. The raw images are preprocessed and forwarded into each deep CNN models: VGG-19, GoogLeNet, and ResNet-50. Feature 

extraction is done on the 40-d fc layer and prob layer on the three models and also 100-d fc layer on VGG-19 and GoogLeNet. These vectors are concatenated in 

groups of two and three and forwarded into Random Forest (RF) and SVM classifiers. 



In Fig. 3, the “100d”, “40d”, and “prob” on the CNN step 
refer to the layers from which we extracted features. The 
concatenated features are classified using Random Forest (RF) 
and SVM. 

V. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION 

A. Setup and Implementation 

We ran the experiments on the individual model using 
Caffe [28], which is an open source deep learning software 
framework developed by the Berkley Vision and Learning 
Center. Caffe plugs in into the NVIDIA DIGITS platform [29], 
which is a Deep Learning GPU Training System. NVIDIA 
DIGITS [28] is an open source project that enables the users to 
design and test their neural networks for image category 
classification and object detection with real-time visualization.  

The hardware configuration of our system is one NVIDIA 
GeForce GTX TITAN X GPU with 12GB of VRAM. The 
system has two Intel Xeon processors E5-2690 v3 2.60GHz 
with a total of 48/24 logical/physical cores and 256 GB of main 
memory. 

We trained our VGG-19 model using batch size of 40, base 
learning rate of 0.0002, gamma of 0.96, momentum of 0.9, and 
weight decay of 0.0005 for 50 epochs. Our GoogLeNet was 
trained using batch size of 40, base learning rate of 0.0009, 
gamma of 0.1, momentum of 0.9, and weight decay of 0.0005 
for 30 epochs. Our ResNet-50 model was trained using batch 
size of 16, base learning rate of 0.0009, gamma of 0.1, 
momentum of 0.9, and weight decay of 0.0005 for 30 epochs. 
We used the scikit-learn Python library to implement and test 
our fusion model using Random Forest and SVM.  

We used accuracy to measure our results instead of mean 
average precision (mAP) since mAP is more suitable for 
information retrieval while we are interested in finding 
classification performance.  

B. Experimental Results and Discussion 

We use t-Distributed Stochastic Neighbor Embedding (t-
SNE) [26] for visualization of results. t-SNE is a technique for 
dimensionality reduction that is particularly well suited for the 
visualization of high-dimensional datasets. Fig. 3 shows t-SNE 
visualization of the Stanford 40 Actions validation set. 
Clustering results are generated by extracting 40-dimensional 
features from fully connected layer of ResNet-50. 

Table I lists the best results of our individual deep CNN 
models. We see that ResNet-50 achieved the highest accuracy 
with 79.049%. This result was obtained on the 40-d layer using 
SVM. GoogLeNet and VGG-19 delivered almost similar 
accuracy, with GoogLeNet getting slightly higher result. Both 
results were obtained on the prob layer using softmax. 

Table II displays the action recognition accuracy of our 
various fusion models. We only displayed the top 3 layer 
combinations of each fusion model as there isn’t enough space 
to display all of the layer combination test results. The “Layer” 
row indicates these best performing layer combination in no 
particular order. “P” refers to the probability vectors extracted 
from the models’ prob layer while “40” refers to the 40-d layer 
and “100” refers to the 100-d layer. Thus, “V40”, “G40”, and 
“R40” refer to the features extracted from the 40-d layers of the 
VGG-19 (V), GoogLeNet (G), and ResNet-50 (R) models, and 
the same naming convention applies to the rest. We displayed 
the test accuracy results of these fusion models using Random 
Forest (RF) and SVM.  The bolded values are the highest of 
these classification results.  

As we scan the fusion results on Table II, we see that the 
highest layer combination accuracy increases from 79.176% 
(VP+GP), 80.278% (VP+R40), 80.351% (G40+R40), and 
finally 81.146% (VP+GP+R40); all using SVM. Note that this 
highest result of 81.146% is a fusion the VGG-19 and 
GoogLeNet’s prob layers (VP and GP) and ResNet-50’s 40-d 
fc layer (R40). If we look at Table I, VP, GP, and R40 are the 
top performing layers in the individual run. VP and GP’s 
contribution can also be seen in V+G, with VP and GP 
achieving the best results for VGG-19 and GoogLeNet fusion.  

We can see that VP shows up numerously in Table II; 

TABLE I.  TOTAL AVERAGE ACCURACY OF INDIVIDUAL MODELS (%) 

VGG-19 GoogLeNet ResNet-50 

prob prob 40-d fc 

76.464 76.591 79.049 

 

TABLE II.  TOTAL AVEARAGE ACCURACY OF FUSION MODELS  (%) 

Model V+G V+R G+R V+G+R 

Layer VP+GP V40+G40 VP+G40 VP+R40 V40+R40 V100+RP GP+RP G40+R40 G100+R40 VP+GP+R40  VP+GP+RP  VP+G40+R40 

RF 77.657 75.868 76.988 77.585 79.013 79.718 80.152 79.158 79.338 79.48 80.206 78.417 

SVM 79.176 78.182 78.362 80.278 78.688 76.428 80.116 80.351 79.827 81.146 80.369 80.947 

 

 
Fig. 4. Accuracy (%) comparison between individual VGG-19 (V), 

GoogLeNet (G), and ResNet-50 (R) models with fusion models V + G, V + R, 

G + R, and V + G + R. The values listed here are the same bolded values 

found in Table II. 



VP+R40 generates the highest accuracy for the V+R fusion, 
VP+GP+RP generating above 80% accuracy results using both 
RF and SVM; and finally VP+G40+R40 achieving the second 
best result of all fusion models with 80.947% and VP+GP 
achieving the highest results in V+G fusion model.  

Besides its combination with VP, R40, and RP in the 
V+G+R and V+G fusion models, GP also contributes in 
bringing above 80% accuracy in the GP+RP model. GP’s 
contribution is rivaled by G40. For the V+G model, G40 and 
VP produce one of top 3 best results. For the G+R model, a 
fusion of G40 and R40 generate the highest accuracy for that 
model with 80.351%. For V+G+R model, G40 concatenated 
with VP and R40 also produces one of the top 3 accuracy 

results. 

Another significant layer is R40. As mentioned above, the 
best performing fusion model is the product of VP, GP, and 
R40. ResNet’s prob layer, RP, is also one of the best 
contributors in the fusion models.   

Fusion of two lower performing individual models (V+G) 
turned out to be the lowest performing fusion model with 
79.176% accuracy. V+R slightly performed better with 
80.278%, while G+R 80.351%. The best result is achieved by 
fusing all three (V+G+R) with 81.146% accuracy.    

The results show that the fusion models outperformed the 
individual models. Even the lowest performing fusion model 

TABLE III.  CLASS ACCURACY OF THE V+G+R FUSION MODEL (%) 

Class Result Class Result Class Result Class Result 

applauding 71.429 fishing 92.353 playing violin 94.156 taking photos 62.617 

blowing bubbles 86.131 fixing a bike 86.822 pouring liquid 59.770 texting message 47.000 

brushing teeth 65.179 fixing a car 85.143 pushing a cart 86.861 throwing frisby 76.147 

cleaning the floor 84.000 gardening 75.221 reading 60.00 using a computer 77.206 

climbing 94.845 holding an umbrella 94.872 riding a bike 93.434 walking the dog 87.562 

cooking 83.815 jumping 86.022 riding a horse 95.455 washing dishes 63.158 

cutting trees 79.661 looking through a microscope 86.735 rowing a boat 86.316 watching TV 88.525 

cutting vegetables 66.667 looking through a telescope 81.818 running 78.431 waving hands 49.580 

drinking 75.000 phoning 60.135 shooting an arrow 95.876 writing on a board 85.882 

feeding a horse 96.703 playing guitar 96.257 smoking 62.016 writing on a book 77.519 

 

 
Fig. 5. Confusion matrix of V+G+R. 



with two networks (V+G with 79.176%) performed better than 
the best performing individual model (ResNet’s 79.049%). 
These results strengthen our proposal that fusing two models 
increased the classification performance. 

To further illustrate the fusion models’ accuracy in 
comparison with individual models, Fig. 4 depicts the accuracy 
results of the three individual models (V, G, and R), the fusion 
duos (V+G, V+R, and G+R), and the fusion trio (V+G+R).  

It shows how different ResNet makes into improving the 
accuracy. The difference between individual Resnet results and 
VGG-19 is 2.585%, while it is slightly lower with 2.458% for 
GoogLeNet. Also, note that the V+G result is 79.176 but the 
ResNet addition increases the accuracy to 81.146%, which 
makes a 2.097% difference. This iterates our claim that adding 
another model to a two-model fusion increases classification 
accuracy. 

Another results that we analyzed are the fusion model’s 
class accuracy (Table  III). This refers to the model’s accuracy 
in recognizing certain class. We can also see it as measuring 
the level of difficulty in recognizing the action categories. The 
results are taken by using our best performing fusion model, 
V+G+R. The easiest class to classify, in which the model 
achieved highest accuracy, is “feeding a horse” with 96.703%, 
while the most difficult one, which is the lowest class 
accuracy, is “texting message” with 47%. The confusion 
matrix in Fig. 5 provides another view to the V+G+R action 
recognition performance. 

VI. CONCLUSION AND FUTURE WORK 

We have proposed that the fusion of two high performing 
deep CNN models achieved better action recognition accuracy 
than an individual model, and that the fusion of three models 
increased the performance further. Our experiments 
demonstrated that the fusion of two deep CNNs generated 
about 2% increase in accuracy, and that adding another 
powerful deep CNN model to the fusion duo increased another 
2% accuracy. We have also investigated the difficulty level of 
the action categories. 

Further investigation could still be done to see if adding 
another high-performing model to the fusion trio would 
improve the accuracy. Another idea to improve accuracy is to 
include object localization method in the fusion methodology. 

VII. REFERENCES 

[1]  T. Blaschke, "Object based image analysis for remote sensing," ISPRS 

J. Photogramm. Remote Sens., vol. 65, no. 1, pp. 2-16, 2010.  

[2]  J. Lai et al., "Image-based vehicle tracking and classification on the 

highway," Int. Conf. on Green Circuits and Systems (ICGCS), 

Shanghai, China, 2010.  

[3]  R. Mar´ee et al., "Biomedical image classification with random 

subwindows and decision trees," ICCV Workshop on Computer Vision 

for Biomedical Image Applications, Beijing, China, 2005.  

[4]  T. Brosnan and D. Sun, "Improving quality inspection of food products 

by computer vision––a review," J. Food Engineering, vol. 61, no. 1, pp. 

3-16, 2004.  

[5]  D. Kim et al., "Traversability classification using unsupervised on-line 

visual learning for outdoor robot navigation," Int. Conf. on Robotics 

and Automation (ICRA), Orlando, FL, 2006.  

[6]  N. Ikizler-Cinbis et al., "Learning actions from the web," Int. Conf. on 

Computer Vision (ICCV), Kyoto, Japan, 2009.  

[7]  B. Yao and L. Fei-Fei, "Grouplet: A structured image representation," 

Int. Conf. on Comp. Vision and Pattern Recognition (CVPR), San 

Francisco, CA, 2010.  

[8]  B. Yao et al., "Combining randomization and discrimination for fine-

grained image categorization," Int. Conf. on Comp. Vision and Pattern 

Recognition (CVPR), Colorado Springs, CO, 2011.  

[9]  V. Delaitre et al., "Recognizing human actions in still images: A study 

of bag-of-features and partbased representations," British Machine 

Vision Conf. (BMVC), Wales, UK, 2010.  

[10]  W. Niu et al., "Human activity detection and recognition for video 

surveillance," Int. Conf on Multimedia and Expo (ICME), Taipei, 

Taiwan, 2004.  

[11]  C. Huang et al., "Human action recognition system for elderly and 

children care using three stream ConvNet," Int. Conf. on Orange 

Technologies (ICOT), Hong Kong, 2015.  

[12]  G. Guo and L. A., "A survey on still image based human action 

recognition," Pattern Recognition, vol. 47, pp. 3343-3361, 2014.  

[13]  Q. Li et al., "Harvesting mid-level visual concepts," Int. Conf. on Comp. 

Vision and Pattern Recognition (CVPR), Portland, OR, 2013.  

[14]  L.-J. Li et al., "Object bank: A high-level image representation for 

scene classification and semantic feature sparsification," Annu. Conf. on 

Neural Information Processing Systems (NIPS), Vancouver, Canada, 

2010.  

[15]  A. Krizhevsky et al., "ImageNet classification with deep convolutional 

neural networks," Annu. Conf. on Neural Information Processing 

Systems (NIPS), Lake Tahoe, 2012.  

[16]  K. Simonyan and A. Zisserman, "Very deep convolutional networks for 

large-scale image recognition," Int. Conf. on Learning Reprsentation 

(ICLR), 2015.  

[17]  C. Szegedy et al., "Going deeper with convolutions," Int. Conf. on 

Comp. Vision and Pattern Recognition (CVPR), Boston, MA, 2015.  

[18]  K. He et al., "Deep residual learning for image recognition," Int. Conf. 

on Comp. Vision and Pattern Recognition (CVPR), Las Vegas, NV, 

2016.  

[19]  S. Arora et al., "Provable bounds for learning some deep 

representations," J. Machine Learning Research, vol. 32, 2014.  

[20]  M. Lin et al., "Network in network," in Int. Conf. on Learning 

Representations (ICLR), Banff, Canada, 2014.  

[21]  K. He et al., "Identity mappings in deep residual networks," arXiv 

preprint arXiv:1603.05027, 2016. 

[22]  S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep 

network training by reducing internal covariate shift," Int. Conf. on 

Machine Learning, Lille, France, 2015.  

[23]  B. Yao and L. Fei-Fei, "Modeling mutual context of object and human 

pose in human-object interaction activities," Int. Conf. on Comp. Vision 

and Pattern Recognition (CVPR), San Franciso, CA, 2010.  

[24]  N. Ikizler-Cinbis et al., "Learning actions from the web," Int. Conf. on 

Computer Vision (ICCV), Kyoto, Japan, 2009.  

[25]  M. Everingham et al., "The PASCAL Visual Object Classes Challenge 

(VOC2010) Results," 2010. 

[26]  L. v. d. Maaten and G. Hinton, "Visualizing data using t-SNE," J. 

Machine Learning Research, vol. 9, pp. 2579-2605, 2008. 

[27] O. Russakovsky et al., “ImageNet large scale visual recognition 

challenge,” Int. J. on Computer Vision, 2015 

[28] Y. Jia et al., “Caffe: Convolutional architecture for fast feature 

embedding, ” arXiv preprint arXiv:1408.5093, 2014. 

[29] NVIDIA DIGITS Software. (2015). Retrieved April 23, 2016, from 

https: //developer.nvidia.com/digits. 

 


