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Abstract—The study of plankton distribution is an 

important tool used for assessing the changes to marine 

ecosystem. Having a robust automated system for 

classification of plankton images plays an important role 

in advancing marine biology research. The images used in 

this study come from the SIPPER system. The challenges 

with SIPPER’s plankton image dataset are the high degree 

of similarities between different classes, high variability 

within the same class, partial occlusion, and noise. Also, 

traditional computer vision techniques require tedious 

work to find suitable features to represent plankton. To 

overcome those issues, we propose the use of 

convolutional neural networks. Results of the experiments 

on SIPPER dataset show improvement in classification 

accuracy in comparison to other state of the art 

approaches. Another major advantage of our approach is 

the scalability for classification of new classes without the 

need for feature engineering. 

Keywords—plankton images, SIPPER system, 

convolutional neural networks, image search. 

 

1 Introduction 

The two main types of plankton: phytoplankton 

(drifting plants) and zooplankton (animal plankton) are 

considered as the main source of food for many aquatic 

animals. Also, carbon fixation by phytoplankton in the 

ocean plays an important role in the global carbon cycle. 

Due to their high ability to respond to changes in their 

environment: like pollution; plankton is considered as an 

alarm signal for detection of changes in marine ecosystem. 

Therefore, the fast mapping of plankton distribution is an 

important mission for oceanographic research. 

In the early days, scientists were limited to the use of 

traditional techniques to investigate the distribution of 

plankton, such as Niskin bottles, towed nets, or pumps to 

collect samples. The counting and recognition of species 

was done by hand. As time progressed, use of cruise ships 

allowed researchers to collect bigger number of samples. 

However, the process of knowing the distribution of 

plankton remained laborious, time consuming and not 

elegant for real applications. Gradually, owing to the 

advancement in imaging technology several underwater 

devices for sampling were developed such as the 

HOLOMAR underwater holographic camera system [1], 

video plankton recorder (VPR) to [2], and the shadowed 

image particle profiling and evaluation recorder (SIPPER) 

[3]. With the use these instruments it became possible to 

perform continuous sampling of plankton. It was a major 

leap on the side of data collection, but the process of 

analysis remained tediously manual. In more recent times, 

the automated analysis of the pictures collected by these 

devices became feasible using sophisticated computer 

vision algorithms.  

We can trace the first work on plankton image 

classification obtained by using VPR [4]. In 2005, Lue et 

al. [5] achieved 90% accuracy on plankton images 

recorded using SIPPER system. Their approach was based 

on classification with Support Vector Machine (SVM) and 

they did not make use of those image features that depend 

on the contour information. During the following year, a 

new shape descriptor was proposed by Tang et al [6] and 

the technique was named Normalized multilevel dominant 

eigenvector estimation, it achieved 91% recognition 

accuracy. Zhao et al. [7] extended the work in [6]; they 

make use of random sampling and multiple classifiers to 

achieve about 93% of recognition accuracy.  

Regardless of the success shown by the 

aforementioned techniques, they suffer from one major 

drawback, which is total dependence on features 

engineering, i.e., the accuracy is determined by the quality 

of the used features. The process of feature engineering is 

difficult and requires much effort. Based on previous 

techniques, it requires extensive work to identify new 

classes of plankton; new features need to be identified, 

which could suitably represent those new classes. Hence, 

scaling up poses a challenge for those techniques. 

In this paper we propose the use of convolutional 

neural networks (CNN), which is end to end learning 

framework. One major advantage of convolutional neural 

networks is its easy scalability to classify new classes. 

Based on the experimental results our proposed CNN 



algorithm exceeds the performance of the previous 

methods. 

This paper is organized as follows. In section 2, we 
describe the plankton image dataset obtained from SIPPER 
system. In section 3, we give details of our proposed CNN 
algorithm for this classification task. Section 4 discusses 
our implementation and gives experimental results 
Concluding remarks appear in Section 5. 
 

2 Plankton image dataset 

The plankton images that we used in our experiment 

are provided by the University of South Florida (Tampa, 

FL, USA). They are captured by the SIPPER system. The 

images were collected during the years 2010 to 2014 from 

the Gulf of Mexico. The dataset contains 81 plankton types 

with more than 750 thousand images. In order to compare 

our method with the previous studies [5], [6], [7] we 

choose the exact same 7 types from the 81 types. Table 1 

gives the names of these seven types and their distribution.  

There are many challenges with plankton images 

represented by the differences between the species of the 

same class and similar appearance between different 

classes. Besides that, occlusion and deformation add more 

difficulty. Figure 1 gives a randomly chosen sample from 

the SIPPER dataset. A major issue is the need to find extra 

features to represent any extra classes added to the dataset. 

The classic solution to this problem is to do features 

engineering and to find useful features to represent the new 

class. To overcome this problem, we need a robust scalable 

approach toward feature extraction without depending 

upon features engineering and followed by robust 

classification. Our proposed solution uses a convolutional 

neural network. 

 

3 Convolutional neural network 

Visual recognition tasks require the construction of a 

suitable and robust feature set to represent the world 

around us. Those features should be invariant to outside 

variations of objects and keep enough relevant information 

to be able to recognize objects. The challenge is how to 

automatically learn such features without the need for 

human intervention. One approach is to simulate the 

process by which animals perform the task of object 

recognition and classification. Convolutional neural 

networks are proved to be the best model that simulates the 

vision abilities in animals with end to end feature learning 

and classification [9]. 

Convolutional neural networks are models that can 

learn invariant features and they are inspired from the 

vision mechanism in animals. This mechanism discovered 

during Hubel et al. [10] work on cat’s visual cortex. 

Fukushima’s Neocognitron [11] was the first simulated 

program based on this architecture.  LeCun et al. [12] 

showed a successful use of convolution networks for 

handwritten recognition. Figure 2 illustrates the 

architecture used by LeCun et al. [12]. The popularity of 

convolutional neural networks started after the impressive 

success achieved in ImageNet Competition [13]. 

The typical design of convolutional neural network is 

stacked stages one after the other. These stages are 

followed at the end by a fully connected neural network. 

Table 1: Plankton Types Distribution 

 
Class No. Class Name Count 

0 Acantharia 131 

1 Calanoid 172 

2 Chaetognath 450 

3 Doliolid 485 

4 Larvacean 529 

5 Radiolaria 563 

6 Trichodesmium 789 

 

 

Class Name Sample Images 

Acantharia 
   

Calanoid 
 

 
 

Chaetognath 
   

Doliolid 
 

  

Larvacean 

 
  

Radiolaria 
 

  

Trichodesmium 

   

 

Figure.1. Random samples from seven classes of the 

SIPPER dataset. 



The fully connected neural network works here as a 

classifier. At each level the convolutional neural networks 

consist typically of filters layer, non-linearity layer, and 

feature pooling layer [9] [12] [13]. The use of multi-level 

convolutional neural networks enables the system to learn 

the features’ hierarchies. It starts from low-level features 

represented by the pixels, next it ascends to the mid-level 

features represented by edges and parts followed by the 

high-level features, which are objects.  

3.1 Filter layer 

The filter layer of the convolutional neural network is 

a variant form of neural networks in several aspects [15] 

[16]. First, neurons in convolutional neural network are 

sparsely connected to neurons in the next layer. On the 

other hand they are fully connected in regular neural 

networks. Second, convolutional neural networks’ neurons 

follow a topographical layout. This means that connections 

are based on the related areas in the visual context. The 

regular neural networks do not make use of this feature. In 

our method, the images are fed to the convolutional layer 

in the format described in the equation (1). The symbols h 

and w refer to the height and width of the images while c 

refers to the number of color channels of the images. 

 h × w × c (1) 

 yj = bj + ∑i Kij ∗ xi (2) 

We refer to each input to the layers as xi. Where i is 

to indicate the filter number. Each component in the filters 

has the form xijk. The output will be computed by equation 

(2) [9]. The kernel (filter) K in the bank of filters has Kn × 

Km dimensions depending upon the specified reception 

field; where n and m are the size of the reception field. 

Also, * indicates convolution operator while b is the 

network bias. Each kernel finds specific features at every 

place on the image. This means moving the kernel 

spatially will look for a particular feature in an image. As 

to which exact image feature a particular kernel will look 

for is decided dynamically by the algorithm [9]. 

3.2 Non-Linearity layer 

The typical activations function for the output of 

neurons are tanh() and sigmoid() functions [9] [13], which 

are shown in equations (3) and (4). The problem with these 

activations is its slow speed when used with gradient 

descent. Using non saturating activation functions proves 

to be faster by many times of magnitude [13] [14]. We 

restrict our work to Rectified Linear Units (ReLUs), which 

is represented by equation (5). 

 sig(x) = 1 / (1 + e-x) (3) 

 tanh(x) = (e2x - 1) / (e2x + 1) (4) 

 f(x) = max(0, x) (5) 

3.3 Pooling layer 

Pooling is a technique for dimensionality reduction 

[16]. This layer aims to remove unrelated information and 

keeps only relevant ones [17]. The input to this layer is the 

output of the non-linearity layer. The output of this layer is 

the reduced version of the input [15]. This layer has pool 

units that are organized in topographical way and connect 

to local areas in the input coming from the non-linearity 

layer.  

The replication of neurons’ weights in the filter bank 

helps to detect features in the different regions of the 

image. The problem that arises in those features is that 

they are not translation invariant. The pooling is used to 

make the features invariant to translation in the input. 

Pooling helps to reduce the sensitivity of activations in 

neural network to the pixels’ locations and the neural 

network structure [18]. The common functions used in 

pooling are maximum and average functions and they are 

usually named max-pooling and average-pooling. There 

are two different ways to feed the input to those functions, 

 

 

 

Figure 2. An example of convolutional neural network for handwritten recognition system [12]. 



which could be either the separate or overlapping mode 

[15]. 

3.4 Dropout layer 

Dropout is a recent technique developed by 

Srivastava et al. [19]. The purpose of this layer is to reduce 

the problem of overfitting and enhance generalization on 

the test data. This method works by removing random 

neurons with their connections during the process of 

learning. Fig 3 shows an example of the dropout layer. 

3.5 Output layer 

The output layer is different from all aforementioned 

layers. The output of this layer is in the form of 

probabilities that sum to one. The probability values 

indicate the confidence level about the chosen class where 

higher value means higher confidence. The common 

function used in this layer is the softmax function. This 

function is linear and it uses the log probability. 

3.6 Learning algorithm 

We used backpropagation algorithm for learning and 

stochastic gradient descent for optimization. We set the 

batch size to 32. Initially the momentum and learning rate 

are set to 0.9 and 0.01 respectively. The momentum and 

learning rate are continually updated as we get close to the 

minima. Also, we used a technique called early stopping 

[20] [21] to prevent overfitting problem in the neural 

network. 

 

4 Implementation and experimental 

results 

The total number of images in the seven class subset 

from the SIPPER dataset is 3119. The data used in the 

experiments is randomly divided into training, testing, and 

validation. Training consists of 56% of the images from 

each class, and testing and validation data is 30% and 14% 

respectively from each class. This gives us a total of 1745 

samples for training, 437 samples for validation, and 937 

samples for testing. 

We divided our experiments into two phases. For the 

first phase we use only one convolutional layer and then 

extend the idea into the second phase with two 

convolutional layers. To standardize the testing results, we 

set many hyper parameters to fixed values. We used a 

fixed size classification layer, which is 2 fully connected 

layers. The first fully connected layer has 256 neurons 

while the second layer has 128 neurons. Each of them is 

followed by a 50% dropout layer. The output layer has the 

same number of classes which is 7 followed by the softmax 

activation function. All the convolutional layers and fully 

connected layers are followed by a ReLu activation 

function and pool layer. We limit the number of hyper-

parameters to be tuned to the number of layers, number of 

filters in each layer, and the size of the reception field. 

 

 
 

Figure 3. On the left fully connected neural network. On 

the right neural network after the dropout [19]. 

Table 2: Classification Accuracy for 1-Layer CNN 
 

No of Filters Reception Field Accuracy (%) 

8 2*2 88.90 

8 3*3 90.71 

8 4*4 90.18 

8 5*5 90.92 

16 2*2 89.86 

16 3*3 89.75 

16 4*4 90.18 

16 5*5 90.07 

32 2*2 88.68 

32 3*3 89.75 

32 4*4 92.38 

32 5*5 92.39 

 

 
 

 

Figure 4. Training and validation loss for the highest 

accuracy in 1-layer convolutional neural network. 

 



4.1 Phase one: 1-layer CNN 

To simplify the experiments in this phase, we start 

with only one layer for the convolutional neural network. 

We set the number of filters to 8, 16, and 32. The reception 

field is set between 2 and 5. Table 2 shows the accuracy 

details related with each of our configuration. We highlight 

the best accuracy associated with different number of 

filters. Our results show that our algorithm performs better 

than what is achieved in [5] and [6]. 

Overfitting is a problem in the neural network. In this 

case, the neural network starts overfitting on the training 

data giving higher accuracies while the accuracy for 

validation and testing data start to drop. We utilize several 

techniques to stop overfitting such us pooling and 

dropping layers. In addition, we use the aforementioned 

early stopping technique in conjunction with pooling and 

dropping methods to achieve higher testing accuracy. 

Figure 4 shows the loss function values associated with the 

number of iterations. Figure 4 relates to the highest 

classification accuracy in 1-layer CNN. This figure 

explains that with higher number of iterations the loss 

function for the training continues to drop while the loss 

function for validation keeps on increasing. 

 Figure 5 shows randomly chosen examples of 

correctly classified types with the 1-layer CNN. Those 

examples include all the seven plankton types. The 

confusion matrix for the 1-layer CNN based on 32 filters 

and 5*5 reception field for one particular cross fold with 

accuracy rate of 92.74% is shown in Table 3. We perform 

3 cross validation for 1-layer CNN with 32 filters and 5*5 

reception field to get the average accuracy rate of 92.39% 

as show in Table 2. 

4.2 Phase two: 2-layer CNN 

In this phase our focus is to add another 

convolutional layer. Depending upon the results we got 

from phase one, we chose the configuration with the best 

accuracy rate to be the setting for the first convolutional 

   

   

 

 

Figure 5. Correctly classified example images from 1-layer 

CNN, from left to right and top to bottom the images are 

from class number 0-6. 

 

Table 3: Confusion Matrix for 1-Layer CNN 

 
Class 

No. 

0 1 2 3 4 5 6 Classification 

Accuracy 

(%) 

0 39 0 0 0 0 0 0 100.00 

1 0 51 0 0 1 0 0 98.07 

2 0 0 121 10 2 0 2 89.62 

3 0 0 13 131 1 0 1 89.72 

4 0 0 0 0 153 0 6 96.22 

5 0 0 0 0 0 169 0 100.00 

6 0 2 5 11 14 0 205 86.49 

Overall Classification 

Accuracy 

92.74 % 

 

Table 4: Classification Accuracy for 2-Layers CNN 

 

No of Filters Reception Field Accuracy (%) 

8 2*2 90.82 

8 3*3 91.14 

8 4*4 90.92 

8 5*5 90.82 

16 2*2 90.60 

16 3*3 89.75 

16 4*4 89.96 

16 5*5 91.88 

32 2*2 92.52 

32 3*3 92.31 

32 4*4 93.38 

32 5*5 94.26 

 

 

   

   

 

 

Figure 6. Correctly classified example images from 2-

layers CNN, from left to right and top to bottom the 

images are from class number 0-6. 

 



layer. In phase 2 we tune the second convolutional layer 

with different reception field and with different number of 

filters.  

As shown in Table 4, overall we got better results 

with the 2-layers CNN in comparison with 1-layer CNN. 

Figure 6 shows randomly chosen examples of correctly 

classified types with the 2-layers CNN. Those examples 

include all the seven plankton types. The confusion matrix 

for the 2-layera CNN based on 32 filters and 5*5 reception 

field for one particular cross fold with accuracy rate of 

94.55% is shown in Table 5. We perform 3 cross 

validation for 2-layers CNN with 32 filters and 5*5 

reception field to get the average accuracy rate of 94.26% 

as show in Table 4. 

Figure 7 relates to the highest classification accuracy 

in 2-layers CNN. This figure explains that with higher 

number of iterations the loss function for the training 

continues to drop while the loss function for validation 

keeps on increasing. It also suggests that the 2-layers CNN 

requires more training epochs to start converging than 

what is required by 1-layer CNN. 

Table 6 gives a comparison of the classification 

performance with other methods on the SIPPER dataset. 

We obtain classification performance of 94.26%, which is 

better than other previous methods. 

 

5 Conclusions and future work 

The study of plankton distribution is an important 

tool used for assessing the changes to marine ecosystem. 

Efficient analysis and classification of huge amounts of 

plankton data requires robust algorithms. Traditional 

computer vision techniques require tedious work to find 

suitable features to represent plankton. In our paper, we 

proposed the use of convolutional neural networks. Results 

of the experiments using the SIPPER dataset show 

improvement in classification accuracy in comparison to 

the previous approaches from other research groups. 

Another major advantage of our approach is the scalability 

for classification of new classes without the need for 

feature engineering. 

In the future we plan to further improve the 

performance of our method by expanding the number of 

layers in the convolutional neural network. We also plan to 

explore the combination of convolutional neural network 

and other classification algorithms such as SVM or 

Random Forest to improve the overall efficiency of the 

classification methodology. 
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Figure 7. Training and validation loss for the highest 

accuracy in 2-layer CNN. 

 

 

Table 5: Confusion Matrix for 2-Layers CNN 
 

Class 

No. 

0 1 2 3 4 5 6 Classification 

Accuracy 

(%) 

0 39 0 0 0 0 0 0 100.00 

1 0 51 0 0 1 0 0 98.07 

2 0 0 125 9 1 0 0 92.59 

3 0 0 15 129 1 0 1 88.35 

4 0 1 1 0 155 0 2 97.48 

5 0 0 0 0 0 168 1 99.40 

6 0 3 2 6 7 0 219 92.40 

Overall Classification 

Accuracy (%) 

94.55 % 

 

Table 6: Comparison of the Classification Performance 

with other Methods on the SIPPER dataset 
 

Method 
Accuracy 

(%) 

Normalized Multilevel Dominant 

Eigenvector Estimation [6] 
91.70 

Bagging Based [7] 93.04 

Random Subspace [8] 93.27 

Our proposed 2-layers CNN 

method 
94.26 
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